zoukankan      html  css  js  c++  java
  • [算法] 彻头彻尾理解二分检索 6 种变换

    #include <iostream>
    #include <string>
    #include <cstring>
    #include <cstdlib>
    #include <cstdio>
    #include <cmath>
    #include <vector>
    #include <stack>
    #include <deque>
    #include <queue>
    #include <bitset>
    #include <list>
    #include <map>
    #include <set>
    #include <iterator>
    #include <algorithm>
    #include <functional>
    #include <utility>
    #include <sstream>
    #include <climits>
    #include <cassert>
    #define BUG puts("here!!!");
    
    using namespace std;
    int firstEqual(int *arr, int n, int key) {
    	int l = 0, r = n-1;
    	while(l <= r) {
    		int mid = (l+r) /2;
    		if(arr[mid] >= key) r = mid - 1;
    		else l = mid + 1;
    	}
    	if(l < n && arr[l] == key) return l;
    	return -1;
    }
    int firstEqualOrLarge(int *arr, int n, int key) {
    	int l = 0, r = n-1;
    	while(l <= r) {
    		int mid = (l+r) /2;
    		if(arr[mid] >= key) r = mid - 1;
    		else l = mid + 1;
    	}
    	return l;
    }
    int lastSmaller(int *arr, int n, int key) {
    	int l = 0, r = n-1;
    	while(l <= r) {
    		int mid = (l+r) /2;
    		if(arr[mid] >= key) r = mid - 1;
    		else l = mid + 1;
    	}
    	return r;
    }
    int lastEqual(int *arr, int n, int key) {
    	int l =  0, r = n-1;
    	while(l <= r) {
    		int mid = (l + r) / 2;
    		if(arr[mid] > key) r = mid - 1;
    		else l = mid + 1;
    	}
    	if(r >= 0 && arr[r] == key) return r;
    	return -1;
    }
    int firstLarge(int *arr, int n, int key) {
    	int l =  0, r = n-1;
    	while(l <= r) {
    		int mid = (l + r) / 2;
    		if(arr[mid] > key) r = mid - 1;
    		else l = mid + 1;
    	}
    	return l;
    }
    int lastEqualOrSmaller(int *arr, int n, int key) {
    	int l =  0, r = n-1;
    	while(l <= r) {
    		int mid = (l + r) / 2;
    		if(arr[mid] > key) r = mid - 1;
    		else l = mid + 1;
    	}
    	return r;
    }
    int main() {
    	return 0;
    }
    

  • 相关阅读:
    Keras实例教程(2)
    Keras实例教程(1)
    tf.nn.l2_loss()的用法
    在tensorflow中使用batch normalization
    Tensorflow的LRN是怎么做的
    CNN卷积中多通道卷积的参数问题
    caffe学习网站
    交叉熵反向求导计算过程
    矩阵求导
    循环神经网络(RNN)模型与前向反向传播算法
  • 原文地址:https://www.cnblogs.com/robbychan/p/3787064.html
Copyright © 2011-2022 走看看