题目:
Given a sequence a[1],a[2],a[3]……a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is “Case #:”, # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5
Sample Output
Case 1:
14 1 4Case 2:
7 1 6
思路:
经典入门dp,难度小,主要因为自己太粗心WA了4次,记录一下长记性。
WA的地方是记录子序列末位置last时没有初始化为1,导致如果最大子序列就是第一个元素的时候last为0。
Code:
1 #include<bits/stdc++.h> 2 using namespace std; 3 #define MAXN 100000+10 4 #define M(a, b) memset(a, b, sizeof(a)) 5 int a[MAXN], dp[MAXN], first, last, maxsum; 6 7 void Do(){ 8 M(dp, 0); 9 M(a, 0); 10 int n; 11 scanf("%d", &n); 12 for (int i = 1; i <= n; ++i) scanf("%d", &a[i]); 13 dp[1] = a[1]; 14 for (int i = 2; i <= n; ++i) dp[i] = max(a[i]+dp[i-1], a[i]); 15 maxsum = dp[1]; 16 last = 1; 17 for (int i = 2; i <= n; ++i) 18 if (dp[i] > maxsum){ 19 maxsum = dp[i]; 20 last = i; 21 } 22 int temp = maxsum; 23 for (int i = last; i >= 1; --i){ 24 temp -= a[i]; 25 if (!temp) first = i; 26 } 27 } 28 29 int main() 30 { 31 int T; 32 scanf("%d", &T); 33 for (int i = 1; i <= T; ++i){ 34 Do(); 35 printf("Case %d: %d %d %d ", i, maxsum, first, last); 36 if (i != T) printf(" "); 37 } 38 39 return 0; 40 }