zoukankan      html  css  js  c++  java
  • 一 梳理 从 HDFS 到 MR。

      MapReduce 不仅仅是一个工具,更是一个框架。我们必须拿问题解决方案去适配框架的 map 和 reduce 过程
      很多情况下,需要关注 MapReduce 作业所需要的系统资源,尤其是集群内部网络资源的使用情况。这是MapReduce 框架在设计上的取舍,是在需要考虑并发、容错、扩展性以及其他挑战与只关注数据的分布式处理之间的平衡。但是,独特的系统加上独特的问题使解决方案产生了独特的设计模式。
     
      我们不仅要关注代码的简洁和可维护性,同时还要考虑到任务会在数百台机器的共享集群上处理 TB 级甚至 PB 级的数据,任务性能也需要格外地重视。同时,该作业与共享集群的机器上数以百计的任务存在竞争关系。 一个好的设计可以带来几个数量级的性能提升,因此选择正确的设计来实现 MapReduce 算法就显得尤为重要。
     
      随着 pig、hive 的发展,他们更将能解决 90% 以上的业务场景。 但是那10% 将是他们无法解决的。 这种情况编写MR 就是最好的解决方案。    就像有些时候依然必须用 汇编语言一样。
     
     
     
    HDFS 分块  - MapReduce 分析
     
        HDFS 数据划分        : 文件上传之后,第一件事就是数据划分,是按照配置文件的块大小进行的物理分块。 
        Hadoop 数据划分    : 现在版本是 JobClient  去进行划分分析 split.file 写入 HDFS 中,到时候 JobTracker 端读这个文件。计算一个文件 有多少个 Block是由 getSplits这个函数计算的单位是Block个数. 
       MapTask任务分配    : map 的个数是由 splits 长度决定 一个 splits 不会包含两个 File 的块不会跨越 File 边界 splits 和 Block 关系式一对多关系,默认是一对一。
       Reduce 任务        : Shuffle, 也是 Copy 阶段,Reduce Task 从各个 MapTask 上远程拷贝数据,并针对某一片数据,如果其大小超过一定阈值,则写到磁盘上,否则直接放在内存中。
    很多情况下 Reduce 执行时需要跨节点拉取其他节点的 map task 结果。 如果集群正在运行的 job 有很多, 那么 task 的正常执行对集群内部的网络资源消耗会很严重。 这种网络小号是正常的。 不能加以限制,能做的就是最大化的减少不必要的消耗。还有在节点内,相比于内存,磁盘 IO 对 job 完成任务影响是很客观的。 
       Shuffer            : 完整的拉取 map 节点数据。 减少对带宽不必要的消耗。 减少磁盘IO对 task 的执行影响。(主要是尽量使用内存而非磁盘。)
     
     
    FileSplit 类:

    (1)数据切分:按照某个策略将输入数据切分成若干个split,以便确定MapTask个数以及对应的split;

    (2)为Mapper提供输入数据:读取给定的split的数据,解析成一个个的key/value对,供mapper使用。

    InputFormat有两个比较重要的方法:(1)List<InputSplit> getSplits(JobContext job);(2)RecordReader<LongWritable, Text> createRecordReader(InputSplit split,TaskAttemptContext context)。

     
     
     





    God has given me a gift. Only one. I am the most complete fighter in the world. My whole life, I have trained. I must prove I am worthy of someting. rocky_24
  • 相关阅读:
    考研级《计算机网络》知识梳理——第五期
    考研级《计算机网络》知识梳理——第三期
    考研级《计算机网络》知识梳理——第九期
    考研级《计算机网络》知识梳理——第八期
    考研级《计算机网络》知识梳理——第四期
    考研级《计算机网络》知识梳理——第十期
    如果你起走得更远!
    vim列编辑模式!
    CSS深入之label与input对齐!
    js中array的sort()方法!
  • 原文地址:https://www.cnblogs.com/rocky24/p/4b10037c7d315b3b2591ac0dcadc3f08.html
Copyright © 2011-2022 走看看