zoukankan      html  css  js  c++  java
  • HDU 3726 Graph and Queries Treap

    这是一个比较全面的题,涉及到了添加删除寻找第k大还有树的合并。

    做法大概先执行所有的删边操作,建立最终的图,这里可以用并查集维护一下, 方便判断是不是在一个联通块中,然后对每个子块建立一个Treap,如果遇到添加边导致两个联通块合并成一个的情况,就将两棵树当中小的那个合并到大的那个里面。因为每次这样的合并操作,必然会有小的那个大小翻倍,其实复杂度是科学的,所以合并操作只要很裸很裸的一个一个节点插入就好。

    这题有点考验代码能力,写起来比较的麻烦。

    #include <cstdio>
    #include <cstring>
    #include <cmath>
    #include <algorithm>
    #include <string>
    #include <vector>
    #include <map>
    #include <set>
    #include <list>
    #include <queue>
    #include <stack>
    
    using namespace std;
    
    typedef long long LL;
    
    const int maxn = 2e4 + 10;
    const int maxm = 6e4 + 10;
    const int maxk = 6e5 + 10;
    
    //treap
    struct Node {
    	Node *ch[2];
    	int rkey, val, size;
    	Node(int v = 0): val(v), size(1) {
    		ch[0] = ch[1] = NULL;
    		rkey = rand();
    	}
    	int cmp(int x) {
    		if(val == x) return -1;
    		if(val < x) return 1;
    		else return 0;
    	}
    	void maintain() {
    		size = 1;
    		if(ch[0] != NULL) {
    			size += ch[0]->size;
    		}
    		if(ch[1] != NULL) {
    			size += ch[1]->size;
    		}
    	}
    };
    
    //0表示左旋,1表示右旋
    void rotate(Node *&o, int d) {
    	Node *k = o->ch[d ^ 1];
    	o->ch[d ^ 1] = k->ch[d];
    	k->ch[d] = o;
    	o->maintain();
    	k->maintain();
    	o = k;
    }
    
    void insert(Node *&o, int x) {
    	if(o == NULL) {
    		o = new Node(x);
    	}
    	else {
    		int d = (x < o->val ? 0 : 1);
    		insert(o->ch[d], x);
    		if(o->ch[d]->rkey > o->rkey) {
    			rotate(o, d ^ 1);
    		}
    	}
    	o->maintain();
    }
    
    void remove(Node *&o, int x) {
    	int d = o->cmp(x);
    	Node *u = o;
    	if(d == -1) {
    		if(o->ch[0] == NULL) {
    			o = o->ch[1];
    			delete u;
    		}
    		else if(o->ch[1] == NULL) {
    			o = o->ch[0];
    			delete u;
    		}
    		else {
    			int d2 = (o->ch[0]->rkey > o->ch[1]->rkey);
    			rotate(o, d2);
    			remove(o->ch[d2], x);
    		}
    	}
    	else {
    		remove(o->ch[d], x);
    	}
    	if(o != NULL) {
    		o->maintain();
    	}
    }
    
    void mergetree(Node *&src, Node *&dest) {
    	if(src->ch[0] != NULL) {
    		mergetree(src->ch[0], dest);
    	}
    	if(src->ch[1] != NULL) {
    		mergetree(src->ch[1], dest);
    	}
    	insert(dest, src->val);
    	delete(src);
    	src = NULL;
    }
    
    void remove_tree(Node *&x) {
    	if(x->ch[0] != NULL) {
    		remove_tree(x->ch[0]);
    	}
    	if(x->ch[1] != NULL) {
    		remove_tree(x->ch[1]);
    	}
    	delete(x); x = NULL;
    }
    
    int findkth(Node *root, int k) {
    	if(root == NULL || k > root->size || k <= 0) {
    		return 0;
    	}
    	int rsize = (root->ch[1] == NULL ? 0 : root->ch[1]->size);
    	if(k == rsize + 1) return root->val;
    	if(k <= rsize) return findkth(root->ch[1], k);
    	return findkth(root->ch[0], k - 1 - rsize);
    }
    
    struct Edge {
    	int u, v;
    	Edge(int u = 0, int v = 0): u(u), v(v) {}
    };
    
    struct Operation {
    	char cmd;
    	int x, k;
    	Operation(char cmd = 0, int x = 0, int k = 0):
    		cmd(cmd), x(x), k(k) {}
    };
    
    Edge edge[maxm];
    Operation opr[maxk];
    int n, m, degree[maxn], opcnt;
    bool isdel[maxm];
    int fa[maxn];
    Node *root[maxn];
    
    int findset(int x) {
    	return x == fa[x] ? x : fa[x] = findset(fa[x]);
    }
    
    void init() {
    	opcnt = 0;
    	memset(isdel, 0, sizeof(isdel));
    	for(int i = 1; i <= n; i++) {
    		fa[i] = i;
    		if(root[i] != NULL) {
    			remove_tree(root[i]);
    		}
    	}
    }
    
    void add_edge(int eid) {
    	int u = edge[eid].u, v = edge[eid].v;
    	int x = findset(u), y = findset(v);
    	if(x == y) return;
    	//将节点数小的树合并到节点大的树上
    	if(root[x]->size < root[y]->size) {
    		fa[x] = y;
    		mergetree(root[x], root[y]);
    	}
    	else {
    		fa[y] = x;
    		mergetree(root[y], root[x]);
    	}
    }
    
    void change_degree(int x, int k) {
    	int y = findset(x);
    	remove(root[y], degree[x]);
    	insert(root[y], k);
    	degree[x] = k;
    }
    
    int query(int x, int k) {
    	return findkth(root[findset(x)], k);
    }
    
    void input() {
    	for(int i = 1; i <= n; i++) {
    		scanf("%d", &degree[i]);
    	}
    	for(int i = 1; i <= m; i++) {
    		int u, v;
    		scanf("%d%d", &u, &v);
    		edge[i] = Edge(u, v);
    	}
    	char cmd;
    	int x, k;
    	while(scanf(" %c", &cmd), cmd != 'E') {
    		if(cmd == 'D') {
    			scanf("%d", &x);
    			isdel[x] = true;
    		}
    		else if(cmd == 'C') {
    			scanf("%d%d", &x, &k);
    			int tmp = degree[x];
    			degree[x] = k;
    			k = tmp;
    		}
    		else {
    			scanf("%d%d", &x, &k);
    		}
    		opcnt++;
    		opr[opcnt] = Operation(cmd, x, k);
    	}
    }
    
    void build_graph() {
    	for(int i = 1; i <= n; i++) {
    		root[i] = new Node(degree[i]);
    	}
    	for(int i = 1; i <= m; i++) if(!isdel[i]) {
    		add_edge(i);
    	}
    }
    
    int main() {
    	int kase = 1;
    	while(scanf("%d%d", &n, &m), n != 0 && m != 0) {
    		init();
    		input();
    		build_graph();
    		double ans = 0;
    		int qcnt = 0;
    		for(int i = opcnt; i > 0; i--) {
    			if(opr[i].cmd == 'D') {
    				add_edge(opr[i].x);
    			}
    			else if(opr[i].cmd == 'C') {
    				change_degree(opr[i].x, opr[i].k);
    			}
    			else {
    				ans += query(opr[i].x, opr[i].k);
    				qcnt++;
    			}
    		}
    		printf("Case %d: %.6f
    ", kase++, ans / qcnt);
    	}
    	return 0;
    }
    

      

  • 相关阅读:
    修改Firebug字体
    [CodeWars][JS]如何判断给定的数字是否整数
    [CodeWars][JS]实现链式加法
    【ACM成长之路】刷题记录
    【C++】用于ACM/OI等算法竞赛的读入优化
    C# 读取写入excel单元格(包括对excel的一些基本操作)
    Git上传本地项目到GitHub等云托管仓库
    贝塞尔曲线(B-spline)的原理与应用
    【已解决】Ubuntu U盘启动出现“Failed to load ldlinux.c32”问题
    【算法】Tarjan算法求强连通分量
  • 原文地址:https://www.cnblogs.com/rolight/p/4276697.html
Copyright © 2011-2022 走看看