zoukankan      html  css  js  c++  java
  • svm格式数据转换为tensorflow数据格式

    #!/usr/bin/env python

    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data

    # In[2]:

    #mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

    # 每个批次的大小
    #batch_size = 100
    # 计算一共有多少个批次
    #n_batch = mnist.train.num_examples // batch_size
    input_num = 16
    output_num = 11
    def create_file(path,output_num):
    write = tf.python_io.TFRecordWriter('train.tfrecords')
    with open(path,'r') as file:
    lines = file.readlines()
    # print lines.__len__()
    count = 0
    data = []
    featuresList = []
    labelList = []
    label = []
    label3 = []
    for line in lines:
    word = line.split(" ")
    features = []
    #label3=[]
    for i in range(1, len(word)):
    if i < (len(word) - 1):
    features.append(word[i].split(":")[1])
    else:
    features.append(word[len(word) - 1].split(":")[1].split(" ")[0])
    label.append(int(word[0]))
    count = count + 1
    #print(count)
    featuresList.append(features)
    labelList.append(label)
    for m in labelList[0]:
    label2 = []
    for k in range(output_num):
    k+=1
    #print(k,m)
    if m == k:
    label2.append(1)
    else:
    label2.append(0)
    label3.append(label2)
    data.append(featuresList)
    data.append(label3)
    write.close()
    return data[0],data[1]

    data = create_file("train02.txt",output_num)
    test = create_file("train02.txt",output_num)
    d = tf.convert_to_tensor(data[0])#训练集
    d1 = tf.convert_to_tensor(data[1])

    # 初始化权值
    def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1) # 生成一个截断的正态分布
    return tf.Variable(initial)


    # 初始化偏置
    def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)


    # 卷积层
    def conv2d(x, W):
    # x input tensor of shape `[batch, in_height, in_width, in_channels]`
    # W filter / kernel tensor of shape [filter_height, filter_width, in_channels, out_channels]
    # `strides[0] = strides[3] = 1`. strides[1]代表x方向的步长,strides[2]代表y方向的步长
    # padding: A `string` from: `"SAME", "VALID"`
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')


    # 池化层
    def max_pool_2x2(x):
    # ksize [1,x,y,1]
    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    # 定义两个placeholder
    x = tf.placeholder(tf.float32, [None, input_num])
    y = tf.placeholder(tf.float32, [None, output_num])
    # 改变x的格式转为4D的向量[batch, in_height, in_width, in_channels]`
    x_image = tf.reshape(x, [-1, 4, 4, 1])
    # 初始化第一个卷积层的权值和偏置
    W_conv1 = weight_variable([2, 2, 1, 16]) # 5*5的采样窗口,32个卷积核从1个平面抽取特征
    b_conv1 = bias_variable([16]) # 每一个卷积核一个偏置值
    # 把x_image和权值向量进行卷积,再加上偏置值,然后应用于relu激活函数
    conv2d_1 = conv2d(x_image, W_conv1) + b_conv1
    h_conv1 = tf.nn.relu(conv2d_1)
    h_pool1 = max_pool_2x2(h_conv1) # 进行max-pooling
    # 初始化第二个卷积层的权值和偏置
    #W_conv2 = weight_variable([2, 2, 16, 32]) # 5*5的采样窗口,64个卷积核从32个平面抽取特征
    #b_conv2 = bias_variable([32]) # 每一个卷积核一个偏置值
    # 把h_pool1和权值向量进行卷积,再加上偏置值,然后应用于relu激活函数
    #conv2d_2 = conv2d(h_pool1, W_conv2) + b_conv2
    #h_conv2 = tf.nn.relu(conv2d_2)
    #h_pool2 = max_pool_2x2(h_conv2) # 进行max-pooling
    # 28*28的图片第一次卷积后还是28*28,第一次池化后变为14*14
    # 第二次卷积后为14*14,第二次池化后变为了7*7
    # 进过上面操作后得到64张7*7的平面
    # 初始化第一个全连接层的权值
    W_fc1 = weight_variable([2 * 2 * 16, 512]) # 上一场有7*7*64个神经元,全连接层有1024个神经元
    b_fc1 = bias_variable([512]) # 1024个节点
    # 把池化层2的输出扁平化为1维
    h_pool2_flat = tf.reshape(h_pool1, [-1, 2 * 2 * 16])
    # 求第一个全连接层的输出
    wx_plus_b1 = tf.matmul(h_pool2_flat, W_fc1) + b_fc1
    h_fc1 = tf.nn.relu(wx_plus_b1)
    # keep_prob用来表示神经元的输出概率
    keep_prob = tf.placeholder(tf.float32)
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
    # 初始化第二个全连接层
    W_fc2 = weight_variable([512, output_num])
    b_fc2 = bias_variable([output_num])
    wx_plus_b2 = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
    # 计算输出
    prediction = tf.nn.softmax(wx_plus_b2)
    # 交叉熵代价函数
    cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y, logits=prediction))
    # 使用AdamOptimizer进行优化
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    # 结果存放在一个布尔列表中
    correct_prediction = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1)) # argmax返回一维张量中最大的值所在的位置
    # 求准确率
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

    with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for epoch in range(5000):
    #for batch in range(n_batch):
    #batch_xs, batch_ys = mnist.train.next_batch(batch_size)
    batch_xs = sess.run(d)
    #print(dd)
    batch_ys = sess.run(d1)
    sess.run(train_step, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 0.7})
    if epoch % 20 ==0:
    acc = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.0})
    print("Iter " + str(epoch) + ", Testing Accuracy= " + str(acc))

    #====================

    Iter 4820, Testing Accuracy= 0.45184085
    Iter 4840, Testing Accuracy= 0.4525846
    Iter 4860, Testing Accuracy= 0.45332837
    Iter 4880, Testing Accuracy= 0.45444402
    Iter 4900, Testing Accuracy= 0.45444402
    Iter 4920, Testing Accuracy= 0.45444402
    Iter 4940, Testing Accuracy= 0.45704722
    Iter 4960, Testing Accuracy= 0.45667535
    Iter 4980, Testing Accuracy= 0.45816287

  • 相关阅读:
    [bbk5177]第62集第6章 用scheduler自动化 10(章节标题内容调整)
    [bbk4956]第65集 第7章 数据库的维护 02
    [bbk4940]第61集第6章 用scheduler自动化 09
    [bbk5179]第66集 第7章 数据库的维护 03
    ORA01031: insufficient privileges(有待于二次解决)
    Google Analytics功能篇 如何跟踪邮件打开率与点击率
    小资之豆浆篇 (IS2120@BG57IV3)
    wix custom action 之 vbscript 简明步骤(IS2120@BG57IV3)
    c++ faq (15)
    linux 下面字符串处理函数实现 抄来看一下 抄自[http://blog.csdn.net/BeWithLei/article/details/1719242]
  • 原文地址:https://www.cnblogs.com/rongye/p/10022533.html
Copyright © 2011-2022 走看看