zoukankan      html  css  js  c++  java
  • plt练习


    """
    Please note, this code is only for python 3+. If you are using python 2+, please modify the code accordingly.
    """
    import tensorflow as tf
    import numpy as np
    import matplotlib.pyplot as plt

    def add_layer(inputs, in_size, out_size, activation_function=None):
    Weights = tf.Variable(tf.random_normal([in_size, out_size]))
    biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
    Wx_plus_b = tf.matmul(inputs, Weights) + biases
    if activation_function is None:
    outputs = Wx_plus_b
    else:
    outputs = activation_function(Wx_plus_b)
    return outputs

    # Make up some real data
    x_data = np.linspace(-1, 1, 300)[:, np.newaxis]
    noise = np.random.normal(0, 0.05, x_data.shape)
    y_data = np.square(x_data) - 0.5 + noise

    ##plt.scatter(x_data, y_data)
    ##plt.show()

    # define placeholder for inputs to network
    xs = tf.placeholder(tf.float32, [None, 1])
    ys = tf.placeholder(tf.float32, [None, 1])
    # add hidden layer
    l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
    # add output layer
    prediction = add_layer(l1, 10, 1, activation_function=None)

    # the error between prediciton and real data
    loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction), reduction_indices=[1]))
    train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
    # important step
    init = tf.global_variables_initializer()
    sess= tf.Session()
    sess.run(init)

    # plot the real data
    fig = plt.figure()
    ax = fig.add_subplot(1,1,1)
    ax.scatter(x_data, y_data)
    plt.ion()
    plt.show(block=False)


    for i in range(1000):
    # training
    sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
    if i % 50 == 0:
    # to visualize the result and improvement
    try:
    ax.lines.remove(lines[0])
    except Exception:
    pass


    prediction_value = sess.run(prediction, feed_dict={xs: x_data})
    # plot the prediction
    lines = ax.plot(x_data, prediction_value, 'r-', lw=5)
    plt.pause(0.2)

  • 相关阅读:
    Android SDK上手指南1:应用程序结构
    【转】kalman滤波
    VHDL学习笔记——数字系统设计
    VHDL基础 学习笔记
    Windows命令行(DOS命令)教程
    PHP-内嵌式语言(转)(未看)
    Java并发编程的艺术笔记(三)——Thread.join()
    Java并发编程的艺术笔记(二)——wait/notify机制
    Java并发编程的艺术笔记(一)——volatile和syncronized关键字
    Java虚拟机JVM详解
  • 原文地址:https://www.cnblogs.com/rongye/p/10124478.html
Copyright © 2011-2022 走看看