zoukankan      html  css  js  c++  java
  • 机器学习实战5:k-means聚类:二分k均值聚类+地理位置聚簇实例

      k-均值聚类是非监督学习的一种,输入必须指定聚簇中心个数k。k均值是基于相似度的聚类,为没有标签的一簇实例分为一类。

      一 经典的k-均值聚类  

      思路:  

      1 随机创建k个质心(k必须指定,二维的很容易确定,可视化数据分布,直观确定即可);

      2 遍历数据集的每个实例,计算其到每个质心的相似度,这里也就是欧氏距离;把每个实例都分配到距离最近的质心的那一类,用一个二维数组数据结构保存,第一列是最近质心序号,第二列是距离;

      3 根据二维数组保存的数据,重新计算每个聚簇新的质心;

      4 迭代2 和 3,直到收敛,即质心不再变化;

    from numpy import *
    
    def loadDataSet(fileName):      #general function to parse tab -delimited floats
        dataMat = []                #assume last column is target value
        fr = open(fileName)
        for line in fr.readlines():
            curLine = line.strip().split('	')
            fltLine = map(float,curLine) #map all elements to float()
            dataMat.append(fltLine)
        return dataMat
    
    def distEclud(vecA, vecB):
        return sqrt(sum(power(vecA - vecB, 2))) #la.norm(vecA-vecB)
    
    def randCent(dataSet, k):
        n = shape(dataSet)[1]
        centroids = mat(zeros((k,n)))#create centroid mat
        for j in range(n):#create random cluster centers, within bounds of each dimension
            minJ = min(dataSet[:,j]) 
            rangeJ = float(max(dataSet[:,j]) - minJ)
            centroids[:,j] = mat(minJ + rangeJ * random.rand(k,1))
        return centroids
        
    def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent):
        m = shape(dataSet)[0]
        clusterAssment = mat(zeros((m,2)))#create mat to assign data points 
                                          #to a centroid, also holds SE of each point
        centroids = createCent(dataSet, k)
        clusterChanged = True
        while clusterChanged:
            clusterChanged = False
            for i in range(m):#for each data point assign it to the closest centroid
                minDist = inf; minIndex = -1
                for j in range(k):
                    distJI = distMeas(centroids[j,:],dataSet[i,:])
                    if distJI < minDist:
                        minDist = distJI; minIndex = j
                if clusterAssment[i,0] != minIndex: clusterChanged = True
                clusterAssment[i,:] = minIndex,minDist**2
            print centroids
            for cent in range(k):#recalculate centroids
                ptsInClust = dataSet[nonzero(clusterAssment[:,0].A==cent)[0]]#get all the point in this cluster
                centroids[cent,:] = mean(ptsInClust, axis=0) #assign centroid to mean 
        return centroids, clusterAssment

      经典的k均值聚类有很大的缺点就是很容易收敛到局部最优,为了避免这种局部最优,我们引入了二分k-均值算法。

      二 二分k-均值聚类算法

      二分k-均值聚类算法是基于经典k-均值算法实现的;里面调用经典k-均值(k=2),把一个聚簇分成两个,迭代到分成k个停止;

      具体思路:

      1 把整个数据集看成一个聚簇,计算质心;并用同样的数据结构二维数组保存每个实例到质心的距离;

      2 对每一个聚簇进行2-均值聚类划分;

      3 计算划分后的误差,选择所有被划分的聚簇中总误差最小的划分保存;

      4 迭代2 和 3 直到聚簇数目达到k停止;

    def biKmeans(dataSet, k, distMeas=distEclud):
        m = shape(dataSet)[0]
        clusterAssment = mat(zeros((m,2)))
        centroid0 = mean(dataSet, axis=0).tolist()[0]
        centList =[centroid0] #create a list with one centroid
        for j in range(m):#calc initial Error
            clusterAssment[j,1] = distMeas(mat(centroid0), dataSet[j,:])**2
        while (len(centList) < k):
            lowestSSE = inf
            for i in range(len(centList)):
                ptsInCurrCluster = dataSet[nonzero(clusterAssment[:,0].A==i)[0],:]#get the data points currently in cluster i
                centroidMat, splitClustAss = kMeans(ptsInCurrCluster, 2, distMeas)
                sseSplit = sum(splitClustAss[:,1])#compare the SSE to the currrent minimum
                sseNotSplit = sum(clusterAssment[nonzero(clusterAssment[:,0].A!=i)[0],1])
                print "sseSplit, and notSplit: ",sseSplit,'--',sseNotSplit
                if (sseSplit + sseNotSplit) < lowestSSE:
                    bestCentToSplit = i
                    bestNewCents = centroidMat
                    bestClustAss = splitClustAss.copy()
                    lowestSSE = sseSplit + sseNotSplit
            bestClustAss[nonzero(bestClustAss[:,0].A == 1)[0],0] = len(centList) #change 1 to 3,4, or whatever
            bestClustAss[nonzero(bestClustAss[:,0].A == 0)[0],0] = bestCentToSplit
            print 'the bestCentToSplit is: ',bestCentToSplit
            print 'the len of bestClustAss is: ', len(bestClustAss)
            centList[bestCentToSplit] = bestNewCents[0,:].tolist()[0]#replace a centroid with two best centroids 
            centList.append(bestNewCents[1,:].tolist()[0])
            clusterAssment[nonzero(clusterAssment[:,0].A == bestCentToSplit)[0],:]= bestClustAss#reassign new clusters, and SSE
        return mat(centList), clusterAssment

      三 地理位置聚簇实例

      地理位置的经纬度正好是二维的,可以可视化出来,所以很适合聚类算法确定质心个数k值;值得注意的是,球面计算距离,不能简单的用欧式距离,而需要用球面距离公式,见函数distSLC;

      代码的含义给定n个俱乐部地址名称,然后使用urllib包,调用yahoo地图的API返回经纬度,调用我们上面实现的k均值聚类算法,找到聚簇的中心,最后利用matplotlib工具可视化出来;

    import urllib
    import json
    def geoGrab(stAddress, city):
        apiStem = 'http://where.yahooapis.com/geocode?'  #create a dict and constants for the goecoder
        params = {}
        params['flags'] = 'J'#JSON return type
        params['appid'] = 'aaa0VN6k'
        params['location'] = '%s %s' % (stAddress, city)
        url_params = urllib.urlencode(params)
        yahooApi = apiStem + url_params      #print url_params
        print yahooApi
        c=urllib.urlopen(yahooApi)
        return json.loads(c.read())
    
    from time import sleep
    def massPlaceFind(fileName):
        fw = open('places.txt', 'w')
        for line in open(fileName).readlines():
            line = line.strip()
            lineArr = line.split('	')
            retDict = geoGrab(lineArr[1], lineArr[2])
            if retDict['ResultSet']['Error'] == 0:
                lat = float(retDict['ResultSet']['Results'][0]['latitude'])
                lng = float(retDict['ResultSet']['Results'][0]['longitude'])
                print "%s	%f	%f" % (lineArr[0], lat, lng)
                fw.write('%s	%f	%f
    ' % (line, lat, lng))
            else: print "error fetching"
            sleep(1)
        fw.close()
        
    def distSLC(vecA, vecB):#Spherical Law of Cosines
        a = sin(vecA[0,1]*pi/180) * sin(vecB[0,1]*pi/180)
        b = cos(vecA[0,1]*pi/180) * cos(vecB[0,1]*pi/180) * 
                          cos(pi * (vecB[0,0]-vecA[0,0]) /180)
        return arccos(a + b)*6371.0 #pi is imported with numpy
    
    import matplotlib
    import matplotlib.pyplot as plt
    def clusterClubs(numClust=5):
        datList = []
        for line in open('places.txt').readlines():
            lineArr = line.split('	')
            datList.append([float(lineArr[4]), float(lineArr[3])])
        datMat = mat(datList)
        myCentroids, clustAssing = biKmeans(datMat, numClust, distMeas=distSLC)
        fig = plt.figure()
        rect=[0.1,0.1,0.8,0.8]
        scatterMarkers=['s', 'o', '^', '8', 'p', 
                        'd', 'v', 'h', '>', '<']
        axprops = dict(xticks=[], yticks=[])
        ax0=fig.add_axes(rect, label='ax0', **axprops)
        imgP = plt.imread('Portland.png')
        ax0.imshow(imgP)
        ax1=fig.add_axes(rect, label='ax1', frameon=False)
        for i in range(numClust):
            ptsInCurrCluster = datMat[nonzero(clustAssing[:,0].A==i)[0],:]
            markerStyle = scatterMarkers[i % len(scatterMarkers)]
            ax1.scatter(ptsInCurrCluster[:,0].flatten().A[0], ptsInCurrCluster[:,1].flatten().A[0], marker=markerStyle, s=90)
        ax1.scatter(myCentroids[:,0].flatten().A[0], myCentroids[:,1].flatten().A[0], marker='+', s=300)
        plt.show()

      四 总结

      优点:易实现;

      缺点:可能收敛到局部最小值,在大数据集上收敛较慢;

      适用数据类型:数值型

  • 相关阅读:
    城市联动
    Js-右键事件
    JS-键盘移动事件
    Js-点名器
    前端学习——HTML
    前端学习——前端基础
    Redis数据库学习
    2020系统综合实践 期末大作业
    #Nginx+Tomcat+Redis session共享
    2020系统综合实践 第7次实践作业
  • 原文地址:https://www.cnblogs.com/rongyux/p/5641825.html
Copyright © 2011-2022 走看看