zoukankan      html  css  js  c++  java
  • [源码解析] PyTorch 分布式 Autograd (6) 引擎(下)

    [源码解析] PyTtorch 分布式 Autograd (6) ---- 引擎(下)

    0x00 摘要

    上文我们介绍了引擎如何获得后向计算图的依赖,本文我们就接着看看引擎如何依据这些依赖进行后向传播。通过本文的学习,大家可以:

    • 了解 RecvRpcBackward 如何给对应的下游节点发送 RPC 消息,可以再次梳理一下worker之间后向传播的交互流程。
    • 了解 AccumulateGrad 如何在上下文累积梯度。

    PyTorch分布式其他文章如下:

    深度学习利器之自动微分(1)

    深度学习利器之自动微分(2)

    [源码解析]深度学习利器之自动微分(3) --- 示例解读

    [源码解析]PyTorch如何实现前向传播(1) --- 基础类(上)

    [源码解析]PyTorch如何实现前向传播(2) --- 基础类(下)

    [源码解析] PyTorch如何实现前向传播(3) --- 具体实现

    [源码解析] Pytorch 如何实现后向传播 (1)---- 调用引擎

    [源码解析] Pytorch 如何实现后向传播 (2)---- 引擎静态结构

    [源码解析] Pytorch 如何实现后向传播 (3)---- 引擎动态逻辑

    [源码解析] PyTorch 如何实现后向传播 (4)---- 具体算法

    [源码解析] PyTorch 分布式(1)------历史和概述

    [源码解析] PyTorch 分布式(2) ----- DataParallel(上)

    [源码解析] PyTorch 分布式(3) ----- DataParallel(下)

    [源码解析] PyTorch 分布式(4)------分布式应用基础概念

    [源码解析] PyTorch分布式(5) ------ DistributedDataParallel 总述&如何使用

    [源码解析] PyTorch分布式(6) ---DistributedDataParallel -- 初始化&store

    [源码解析] PyTorch 分布式(7) ----- DistributedDataParallel 之进程组

    [源码解析] PyTorch 分布式(8) -------- DistributedDataParallel之论文篇

    [源码解析] PyTorch 分布式(9) ----- DistributedDataParallel 之初始化

    [源码解析] PyTorch 分布式(10)------DistributedDataParallel 之 Reducer静态架构

    [源码解析] PyTorch 分布式(11) ----- DistributedDataParallel 之 构建Reducer和Join操作

    [源码解析] PyTorch 分布式(12) ----- DistributedDataParallel 之 前向传播

    [源码解析] PyTorch 分布式(13) ----- DistributedDataParallel 之 反向传播

    [源码解析] PyTorch 分布式 Autograd (1) ---- 设计

    [源码解析] PyTorch 分布式 Autograd (2) ---- RPC基础

    [源码解析] PyTorch 分布式 Autograd (3) ---- 上下文相关

    [源码解析] PyTorch 分布式 Autograd (4) ---- 如何切入引擎

    [源码解析] PyTorch 分布式 Autograd (5) ---- 引擎(上)

    为了更好的说明,本文代码会依据具体情况来进行相应精简。

    0x01 回顾

    我们首先回顾FAST模式算法算法如下,本文需要讨论后面若干部分。

    1. 我们从具有反向传播根的worker开始(所有根都必须是本地的)。
    2. 查找当前Distributed Autograd Context 的所有send函数 。
    3. 从提供的根和我们检索到的所有send函数开始,我们在本地计算依赖项 。
    4. 计算依赖项后,使用提供的根来启动本地 autograd 引擎。
    5. 当 autograd 引擎执行该recv函数时,该recv 函数通过 RPC 将输入梯度发送到适当的worker。每个recv函数都知道目标 worker id,因为它被记录为前向传播的一部分。通过autograd_context_idautograd_message_idrecv函数被发送到远程主机。
    6. 当远程主机收到这个请求时,我们使用 autograd_context_idautograd_message_id来查找适当的send函数。
    7. 如果这是worker第一次收到对给定 autograd_context_id的请求,它将按照上面的第 1-3 点所述在本地计算依赖项。
    8. 然后将在第6点接受到的send方法插入队列,以便在该worker的本地 autograd 引擎上执行。
    9. 最后,我们不是在 Tensor的.grad之上累积梯度,而是在每个Distributed Autograd Context之上分别累积梯度 。梯度存储在Dict[Tensor, Tensor]之中 ,Dict[Tensor, Tensor]基本上是从 Tensor 到其关联梯度的映射,并且可以使用 get_gradients() API检索该映射 。

    其次,我们看看总体执行代码,总体执行是在 DistEngine::execute 之中完成,具体分为如下步骤:

    • 使用 contextId 得到前向的上下文。
    • 使用 validateRootsAndRetrieveEdges 进行验证。
    • 构造一个GraphRoot,用它来驱动后向传播,可以认为是一个虚拟根。
    • 使用 computeDependencies 计算依赖。
    • 使用 runEngineAndAccumulateGradients 进行反向传播计算。
    • 使用 clearAndWaitForOutstandingRpcsAsync 等待 RPC 完成。
    void DistEngine::execute(
        int64_t contextId,
        const variable_list& roots,
        bool retainGraph) {
      // Retrieve the context for the given context_id. This will throw if the
      // context_id is invalid.
      auto autogradContext =
          DistAutogradContainer::getInstance().retrieveContext(contextId);
    
      // Perform initial pre-processing.
      edge_list rootEdges;
      variable_list grads;
      validateRootsAndRetrieveEdges(roots, rootEdges, grads); 
    
      // 构造一个GraphRoot,用它来驱动后向传播,可以认为是一个虚拟根
      std::shared_ptr<Node> graphRoot =
          std::make_shared<GraphRoot>(rootEdges, grads);
      edge_list outputEdges;
      // Compute dependencies locally, starting from all roots and all 'send'
      // functions.
      {
        std::lock_guard<std::mutex> guard(initializedContextIdsLock_);
        // Context should not have been initialized already.
        TORCH_INTERNAL_ASSERT(
            initializedContextIds_.find(autogradContext->contextId()) ==
            initializedContextIds_.end());
    
        // 计算依赖
        computeDependencies(
            autogradContext, rootEdges, grads, graphRoot, outputEdges, retainGraph);
    
        // Mark the autograd context id as initialized.
        initializedContextIds_.insert(autogradContext->contextId());
      }
    
      BackwardPassCleanupGuard guard(autogradContext);
    
      // This needs to be blocking and as a result we wait for the future to
      // complete.
      runEngineAndAccumulateGradients(autogradContext, graphRoot, outputEdges)
          ->waitAndThrow(); // 反向传播计算
    
      // Wait for all of the outstanding rpcs to complete.
      autogradContext->clearAndWaitForOutstandingRpcsAsync()->waitAndThrow();
    }
    

    再次,从前文我们知道,依赖项已经在 computeDependencies 之中处理完毕,所有需要计算的函数信息都位于 GraphTask.exec_info_ 之上。我们接下来就看看如何计算,就是 runEngineAndAccumulateGradients 和 clearAndWaitForOutstandingRpcsAsync 这两个方法。

    0x02 执行GraphTask

    我们首先看看如何使用 runEngineAndAccumulateGradients 进行反向传播计算,累积梯度。

    2.1 runEngineAndAccumulateGradients

    引擎之中,首先调用了 runEngineAndAccumulateGradients。主要是封装了一个 NodeTask,然后以此调用 execute_graph_task_until_ready_queue_empty。其中使用 at::launch 来启动线程。

    c10::intrusive_ptr<c10::ivalue::Future> DistEngine::
        runEngineAndAccumulateGradients(
            const ContextPtr& autogradContext,
            const std::shared_ptr<Node>& graphRoot,
            const edge_list& outputEdges,
            bool incrementOutstandingTasks) {
      // Cleanup previous state for outstanding RPCs. Outstanding RPCs could be
      // lingering if we're running backward multiple times and some of the
      // passes ran into errors.
      autogradContext->clearOutstandingRpcs();
        
      // 得到GraphTask
      auto graphTask = autogradContext->retrieveGraphTask();
      
      // 启动了一个线程来运行 execute_graph_task_until_ready_queue_empty
      at::launch([this, graphTask, graphRoot, incrementOutstandingTasks]() {
        execute_graph_task_until_ready_queue_empty(
            /*node_task*/ NodeTask(graphTask, graphRoot, InputBuffer(0)),
            /*incrementOutstandingTasks*/ incrementOutstandingTasks);
      });
        
      // Use a reference here to avoid refcount bump on futureGrads.
      // 处理结果
      auto& futureGrads = graphTask->future_result_;
    
      // Build a future that waits for the callbacks to execute (since callbacks
      // execute after the original future is completed). This ensures we return a
      // future that waits for all gradient accumulation to finish.
      auto accumulateGradFuture =
          c10::make_intrusive<c10::ivalue::Future>(c10::NoneType::get());
    
      futureGrads->addCallback(
          [autogradContext, outputEdges, accumulateGradFuture](c10::ivalue::Future& futureGrads) {
            if (futureGrads.hasError()) {
    		  // 省略错误处理部分
              return;
            }
    
            try {
              const variable_list& grads =
                  futureGrads.constValue().toTensorVector();
               // 标识已经结束 
              accumulateGradFuture->markCompleted(c10::IValue());
            } catch (std::exception& e) {
              accumulateGradFuture->setErrorIfNeeded(std::current_exception());
            }
          });
    
      return accumulateGradFuture;
    }
    

    at::launch 位于 aten/src/ATen/ParallelThreadPoolNative.cpp,这里会在线程之中调用传入的 func。

    void launch(std::function<void()> func) {
    
      internal::launch_no_thread_state(std::bind([](
        std::function<void()> f, ThreadLocalState thread_locals) {
          ThreadLocalStateGuard guard(std::move(thread_locals));
          f();
        },
        std::move(func),
        ThreadLocalState()
      ));
    }
    
    namespace internal {
        void launch_no_thread_state(std::function<void()> fn) {
        #if AT_EXPERIMENTAL_SINGLE_THREAD_POOL
          intraop_launch(std::move(fn));
        #else
          get_pool().run(std::move(fn));
        #endif
        }
    } 
    

    我们接下来一一看看内部这几个方法如何执行。

    2.2 execute_graph_task_until_ready_queue_empty

    此函数类似 Engine::thread_main,通过一个 NodeTask 来完成本 GraphTask的执行,其中 evaluate_function 会不停的向 cpu_ready_queue 插入新的 NodeTask。engine_.evaluate_function 方法会:

    • 首先,初始化原生引擎线程。
    • 其次,每个调用建立一个 cpu_ready_queue,用来从root_to_execute开始遍历graph_task,这允许用不同的线程来对GraphTask并行执行,这是一个CPU相关的queue。
    • 把传入的 node_task 插入到 cpu_ready_queue。
    • 沿着反向计算图从根部开始,一直计算到叶子节点。
      • 这里叶子节点都是 AccumulateGrad 或者 RecvRpcBackward。

      • 如果是中间节点,则正常计算。

      • 如果是 RecvRpcBackward 则会给对应的下游节点发送 RPC 消息

      • 如果是 AccumulateGrad,则在上下文累积梯度

    具体代码如下:

    void DistEngine::execute_graph_task_until_ready_queue_empty(
        NodeTask&& node_task,
        bool incrementOutstandingTasks) {
      
      // 初始化原生引擎线程
      engine_.initialize_device_threads_pool();
      
      // Create a ready queue per call to traverse the graph_task from
      // root_to_execute This allow concurrent execution of the same GraphTask from
      // different threads
      // 每个调用建立一个 ready queue,用来从root_to_execute开始遍历graph_task,这允许用不同的线程来对GraphTask并行执行,这是一个CPU相关的queue
      std::shared_ptr<ReadyQueue> cpu_ready_queue = std::make_shared<ReadyQueue>();
      auto graph_task = node_task.base_.lock();
      if (graph_task == nullptr) {
        LOG(ERROR) << "GraphTask has expired for NodeTask: "
                   << node_task.fn_->name() << ", skipping execution.";
        return;
      }
    
      cpu_ready_queue->push(std::move(node_task), incrementOutstandingTasks);
    
      torch::autograd::set_device(torch::autograd::CPU_DEVICE);
      graph_task->owner_ = torch::autograd::CPU_DEVICE;
      while (!cpu_ready_queue->empty()) {
        std::shared_ptr<GraphTask> local_graph_task;
        {
          // Scope this block of execution since NodeTask is not needed after this
          // block and can be deallocated (release any references to grad tensors
          // as part of inputs_)
          NodeTask task = cpu_ready_queue->pop(); // 取出一个NodeTask
          if (!(local_graph_task = task.base_.lock())) {
            continue;
          }
          if (task.fn_ && !local_graph_task->has_error_.load()) {
            AutoGradMode grad_mode(local_graph_task->grad_mode_);
            try {
              GraphTaskGuard guard(local_graph_task);
              engine_.evaluate_function( // 这里会调用具体Node对应的函数
                  local_graph_task, task.fn_.get(), task.inputs_, cpu_ready_queue);
            } catch (std::exception& e) {
              engine_.thread_on_exception(local_graph_task, task.fn_, e);
              // break the loop in error so that we immediately stop the execution
              // of this GraphTask, mark it completed if necessary and return the
              // future with proper ErrorMessage
              break;
            }
          }
        }
        // Decrement the outstanding task.
        --local_graph_task->outstanding_tasks_; // 处理了一个NodeTask
      }
      // Check if we've completed execution.
      if (graph_task->completed()) {
        // We don't need to explicitly notify the owner thread, since
        // 'mark_as_completed_and_run_post_processing' would mark the Future as
        // completed and this would notify the owner thread that the task has been
        // completed.
        graph_task->mark_as_completed_and_run_post_processing();
      }
    }
    

    另外,一共有三个地方调用 execute_graph_task_until_ready_queue_empty。

    1. runEngineAndAccumulateGradients 会调用,这里就是用户主动调用 backward 的情形,就是本节介绍的。
    2. executeSendFunctionAsync 会调用,这里对应了某节点从反向传播上一节点接受到梯度之后的操作,我们会在下一节介绍。
    3. globalCpuThread 会调用,这是CPU工作专用线程,我们马上会介绍。
    4. 在 Engine.evaluate_function 之中,会针对 AccumulateGrad 来累积梯度。
    5. 在 Engine.evaluate_function 之中,会调用 RecvRpcBackward 来向反向传播下游发送消息。

    我们总结一下几个计算梯度的流程,分别对应下面三个数字。

     User Training Script             RPC BACKWARD_AUTOGRAD_REQ
         +                                         +
         |                                         |
         | 1                                       | 2
         v                                         v
     backward                         RequestCallbackNoPython.processRpc
         +                                         +
         |                                         |
         |                                         |
         v                                         v
     DistEngine.execute               RequestCallbackNoPython.processBackwardAutogradReq
         +                                         +
         |                                         |
         |                                         |
         |                                         v
         |              +----------+  DistEngine.executeSendFunctionAsync
         |              |                               +
         |              |                               |
         v              v                               |
    DistEngine.computeDependencies                      |
         |                                              |
         |                                              |
         v                                              |
     DistEngine.runEngineAndAccumulateGradients         |     DistEngine.globalCpuThread
         +                                              |                   +
         |                           +------------------+                   |
         |                           |                                      | 3
         |                           |             +------------------------+
         |                           |             |
         |                           |             |
         v                           v             v
     DistEngine.execute_graph_task_until_ready_queue_empty
         +
         |
         |
         v
     DistEngine.evaluate_function
         +
         |
         +--------------------------------------------------------------+
         |                                                              |
         |  4 AccumulateGrad                                            | 5  RecvRpcBackward
         v                                                              v
    
    (*hook)(captured_grad)                            call_function(graph_task, func, inputs)
    

    2.3 evaluate_function

    上面代码之中,实际上会调用原生引擎的 evaluate_function 来完成操作。

    我们看看如何使用 exec_info_,如果没有设置为需要执行,则就不处理。在此处,我们可以看到 上文提到的recvBackwardEdges 如何与 exec_info_ 交互。

    遍历 recvBackwardEdges,对于每个 recvBackward,在 GraphTask.exec_info_ 之中对应项之上设止为需要执行。

    具体代码如下,这里会:

    • 针对 AccumulateGrad 来累积梯度。
    • 调用 RecvRpcBackward 来向反向传播下游发送消息。
    void Engine::evaluate_function(
        std::shared_ptr<GraphTask>& graph_task,
        Node* func,
        InputBuffer& inputs,
        const std::shared_ptr<ReadyQueue>& cpu_ready_queue) {
      // If exec_info_ is not empty, we have to instrument the execution
      auto& exec_info_ = graph_task->exec_info_;
      if (!exec_info_.empty()) {
        auto& fn_info = exec_info_.at(func);
        if (auto* capture_vec = fn_info.captures_.get()) {
          // Lock mutex for writing to graph_task->captured_vars_.
          std::lock_guard<std::mutex> lock(graph_task->mutex_);
          for (const auto& capture : *capture_vec) {
            auto& captured_grad = graph_task->captured_vars_[capture.output_idx_];
            captured_grad = inputs[capture.input_idx_];
            for (auto& hook : capture.hooks_) {
              captured_grad = (*hook)(captured_grad); //这里调用 hook,就是 DistAccumulateGradCaptureHook 的 operator(),captured_grad 就是累积的梯度
            }
          }
        }
        if (!fn_info.needed_) { 
          // Skip execution if we don't need to execute the function.
          return; // 如果没有设置需要执行,则直接返回。recvBackward 会设置需要执行
        }
      }
      
      // 这里就是调用 recvBackward
      auto outputs = call_function(graph_task, func, inputs);
        
      // 后续代码省略  
    

    2.4 globalCpuThread

    globalCpuThread 可以参见上文的 [GPU to CPU continuations] 一节,globalCpuThread是工作线程,其就是从 ready queue 里面弹出 NodeTask,然后执行。

    对于globalCpuThread,其参数 ready_queue 是 global_cpu_ready_queue_

    void DistEngine::globalCpuThread(
        const std::shared_ptr<ReadyQueue>& ready_queue) {
      while (true) {
        NodeTask task = ready_queue->pop();
        if (task.isShutdownTask_) {
          // Need to shutdown this thread.
          break;
        }
    
        auto graphTask = task.base_.lock();
        if (graphTask == nullptr) {
          // GraphTask has expired, ignore and continue processing.
          continue;
        }
    
        // Launch the execution on a JIT thread.
        at::launch([this,
                    graphTask,
                    graphRoot = task.fn_,
                    variables =
                        InputBuffer::variables(std::move(task.inputs_))]() mutable {
          InputBuffer inputs(variables.size());
          for (size_t i = 0; i < variables.size(); i++) {
            inputs.add(i, std::move(variables[i]), c10::nullopt, c10::nullopt);
          }
          execute_graph_task_until_ready_queue_empty( // 这里会调用
              /*node_task*/ NodeTask(graphTask, graphRoot, std::move(inputs)),
              /*incrementOutstandingTasks*/ false);
        });
      }
    }
    

    对于普通引擎也会设置一个 cpu 专用 queue。

    auto graph_task = std::make_shared<GraphTask>(
        /* keep_graph */ keep_graph,
        /* create_graph */ create_graph,
        /* depth */ not_reentrant_backward_call ? 0 : total_depth + 1,
        /* cpu_ready_queue */ local_ready_queue);
    

    2.5 小结

    对于分布式引擎,与普通引擎在计算部分主要不同之处为:

    • 如果是 RecvRpcBackward 则会给对应的下游节点发送 RPC 消息

    • 如果是 AccumulateGrad,则在上下文累积梯度

    所以我们接下来看看具体这两部分如何处理。

    0x03 RPC调用

    在之前文章中,我们看到了接受方如何处理反向传播 RPC 调用,我们接下来看看引擎如何发起反向传播 RPC 调用,就是如何调用 recv 方法。

    这里就适用于下面worker 0 调用 recv ,执行来到 worker 1 这种情况,对应设计文档中如下。

    当 autograd 引擎执行该recv函数时,该recv 函数通过 RPC 将输入梯度发送到适当的worker。每个recv函数都知道目标 worker id,因为它被记录为前向传播的一部分。通过autograd_context_idautograd_message_idrecv函数被发送到远程主机。

    img

    我们就看看如何执行 recv 函数。

    具体结合到分布式引擎,就是当引擎发现某一个 Node 是 RecvRpcBackward,就调用其 apply 函数

    void Engine::evaluate_function(
        std::shared_ptr<GraphTask>& graph_task,
        Node* func,
        InputBuffer& inputs,
        const std::shared_ptr<ReadyQueue>& cpu_ready_queue) {
      // If exec_info_ is not empty, we have to instrument the execution
      auto& exec_info_ = graph_task->exec_info_;
      if (!exec_info_.empty()) {
        // 省略了梯度累积部分代码,具体可以参见上面章节 
        if (!fn_info.needed_) { 
          // Skip execution if we don't need to execute the function.
          return; // 如果没有设置需要执行,则直接返回。recvBackward 会设置需要执行
        }
      }
      
      // 这里就是调用 recvBackward.apply 函数
      auto outputs = call_function(graph_task, func, inputs);
        
      // 后续代码省略  
    

    3.1 RecvRpcBackward

    3.1.1 定义

    RecvRpcBackward 定义如下,

    class TORCH_API RecvRpcBackward : public torch::autograd::Node {
     public:
      explicit RecvRpcBackward(
          const AutogradMetadata& autogradMetadata,
          std::shared_ptr<DistAutogradContext> autogradContext,
          rpc::worker_id_t fromWorkerId,
          std::unordered_map<c10::Device, c10::Device> deviceMap);
    
      torch::autograd::variable_list apply(
          torch::autograd::variable_list&& grads) override;
    
     private:
      const AutogradMetadata autogradMetadata_;
    
      // Hold a weak reference to the autograd context to avoid circular
      // dependencies with the context (since it holds a reference to
      // RecvRpcBackward).
      std::weak_ptr<DistAutogradContext> autogradContext_;
    
      // The worker id from which the RPC was received. During the backward pass,
      // we need to propagate the gradients to this workerId.
      rpc::worker_id_t fromWorkerId_;
    
      // Device mapping for tensors sent over RPC.
      const std::unordered_map<c10::Device, c10::Device> deviceMap_;
    };
    

    3.1.2 构建

    构造函数如下。

    RecvRpcBackward::RecvRpcBackward(
        const AutogradMetadata& autogradMetadata,
        ContextPtr autogradContext,
        rpc::worker_id_t fromWorkerId,
        std::unordered_map<c10::Device, c10::Device> deviceMap)
        : autogradMetadata_(autogradMetadata),
          autogradContext_(std::move(autogradContext)),
          fromWorkerId_(fromWorkerId),
          deviceMap_(std::move(deviceMap)) {}
    

    3.1.3 apply

    torch/csrc/distributed/autograd/functions/recvrpc_backward.cpp 定义了其 apply 函数,其作用就是:

    • 把传入的梯度 grads 放入outputGrads,因为要输出给下一环节。
    • 构建 PropagateGradientsReq,这就是 BACKWARD_AUTOGRAD_REQ。
    • 发送 RPC 给下一环节。
    variable_list RecvRpcBackward::apply(variable_list&& grads) {
      std::vector<Variable> outputGrads;
      for (size_t i = 0; i < grads.size(); i++) { // 下面就是把传入的梯度 grads 放入outputGrads
        const auto& grad = grads[i];
        if (grad.defined()) {
          outputGrads.emplace_back(grad);
        } else {
          // Put in zeros for a tensor with no grad.
          outputGrads.emplace_back(input_metadata(i).zeros_like());
        }
      }
     
      auto sharedContext = autogradContext_.lock();
      // Send the gradients over the wire and record the future in the autograd
      // context.
      PropagateGradientsReq gradCall( // 构建 PropagateGradientsReq
          autogradMetadata_,
          outputGrads,
          sharedContext->retrieveGraphTask()->keep_graph_);
    
      // Send the gradients over to the appropriate node.
      auto rpcAgent = rpc::RpcAgent::getCurrentRpcAgent();
      auto jitFuture = rpcAgent->send( // 发送 RPC
          rpcAgent->getWorkerInfo(fromWorkerId_),
          std::move(gradCall).toMessage(), // 调用了toMessageImpl
          rpc::kUnsetRpcTimeout,
          deviceMap_);
    
      // Record the future in the context.
      sharedContext->addOutstandingRpc(jitFuture);
    
      // 'recv' function sends the gradients over the wire using RPC, it doesn't
      // need to return anything for any downstream autograd function.
      return variable_list();
    }
    

    因为这里发送了 PropagateGradientsReq,所以我们接着看。

    3.2 PropagateGradientsReq

    3.2.1 定义

    PropagateGradientsReq 扩展了 RpcCommandBase。

    // Used to propagate gradients from one node to another during a distributed
    // backwards pass. This RPC call is invoked when we hit a `recv` autograd
    // function during backward pass execution.
    class TORCH_API PropagateGradientsReq : public rpc::RpcCommandBase {
     public:
      PropagateGradientsReq(
          const AutogradMetadata& autogradMetadata,
          std::vector<torch::autograd::Variable> grads,
          bool retainGraph = false);
    
      const AutogradMetadata& getAutogradMetadata();
    
      const std::vector<torch::autograd::Variable>& getGrads();
    
      // Serialization and deserialization methods.
      rpc::Message toMessageImpl() && override;
      static std::unique_ptr<PropagateGradientsReq> fromMessage(
          const rpc::Message& message);
    
      // Whether or not to retain the autograd graph.
      bool retainGraph();
    
     private:
      AutogradMetadata autogradMetadata_;
      std::vector<torch::autograd::Variable> grads_;
      bool retainGraph_;
    };
    

    其 toMessageImpl 指明了本消息是 BACKWARD_AUTOGRAD_REQ。

    Message PropagateGradientsReq::toMessageImpl() && {
      std::vector<at::IValue> ivalues;
      // Add all the grad tensors.
      for (const auto& grad : grads_) {
        ivalues.emplace_back(grad);
      }
    
      // Now add autograd metadata.
      ivalues.emplace_back(autogradMetadata_.autogradContextId);
      ivalues.emplace_back(autogradMetadata_.autogradMessageId);
    
      // Add retain graph.
      ivalues.emplace_back(retainGraph_);
    
      // Now pickle using JIT pickler.
      std::vector<torch::Tensor> tensorTable;
      std::vector<char> payload =
          jit::pickle(c10::ivalue::Tuple::create(std::move(ivalues)), &tensorTable);
    
      return Message(
          std::move(payload),
          std::move(tensorTable),
          MessageType::BACKWARD_AUTOGRAD_REQ); // 这里指明了消息类型。
    }
    

    3.3 接受方

    为了论述完整,我们接下来看看接收方如何处理反向传播。

    3.3.1 接受消息

    在生成 TensorPipeAgent 时候,把 RequestCallbackImpl 配置为回调函数。这是 agent 的统一响应函数。前面关于代理接收逻辑时候,我们也提到了,会进入 RequestCallbackNoPython::processRpc 函数。其中可以看到有对 BACKWARD_AUTOGRAD_REQ 的处理逻辑。

    这种是 RPC 的正常流程。

    void RequestCallbackNoPython::processRpc(
        RpcCommandBase& rpc,
        const MessageType& messageType,
        const int64_t messageId,
        const c10::intrusive_ptr<JitFuture>& responseFuture,
        std::shared_ptr<LazyStreamContext> ctx) const {
    
      switch (messageType) {
    
        case MessageType::BACKWARD_AUTOGRAD_REQ: { 
          processBackwardAutogradReq(rpc, messageId, responseFuture); // 这里调用
          return;
        };
    

    3.3.2 processBackwardAutogradReq

    在 processBackwardAutogradReq 之中会:

    • 获取 DistAutogradContainer。
    • 获取 上下文。
    • 调用 executeSendFunctionAsync 进行引擎处理。

    由此,我们可以看到有两个途径进入引擎:

    • 一个是示例代码显式主动调用 backward,进而调用到 DistEngine::getInstance().execute,就是 worker 0。
    • 一个是被动调用 DistEngine::getInstance().executeSendFunctionAsync,就是 worker 1。
    void RequestCallbackNoPython::processBackwardAutogradReq(
        RpcCommandBase& rpc,
        const int64_t messageId,
        const c10::intrusive_ptr<JitFuture>& responseFuture) const {
      auto& gradientsCall = static_cast<PropagateGradientsReq&>(rpc);
      const auto& autogradMetadata = gradientsCall.getAutogradMetadata();
    
      // Retrieve the appropriate autograd context.
      auto autogradContext = DistAutogradContainer::getInstance().retrieveContext(
          autogradMetadata.autogradContextId); // 得到发送者的context id
    
      // Lookup the appropriate 'send' function to enqueue.
      std::shared_ptr<SendRpcBackward> sendFunction = // 依据发送者context id和消息id得到sendFunction
          autogradContext->retrieveSendFunction(autogradMetadata.autogradMessageId);
    
      // Attach the gradients to the send function.
      sendFunction->setGrads(gradientsCall.getGrads()); // 设置梯度
    
      // Now execute the autograd graph using the "distributed engine."
      auto execFuture = DistEngine::getInstance().executeSendFunctionAsync( // 调用引擎
          autogradContext, sendFunction, gradientsCall.retainGraph());
    
      // Our response is satisfied when the rpcs come back.
      execFuture->addCallback([responseFuture, messageId](JitFuture& execFuture) {
        if (!execFuture.hasError()) {
          Message m = std::move(PropagateGradientsResp()).toMessage();
          m.setId(messageId);
          responseFuture->markCompleted(
              IValue(c10::make_intrusive<Message>(std::move(m))));
        } else {
          responseFuture->setError(execFuture.exception_ptr());
        }
      });
    }
    

    3.3.3 executeSendFunctionAsync

    executeSendFunctionAsync 这里开始进入了引擎,注意,这里是接收方也进入了引擎,在接收方上进行计算。executeSendFunctionAsync 会直接调用 execute_graph_task_until_ready_queue_empty,也可能先计算依赖然后继续执行。此处可以参考设计之中的:

    • 6)当远程主机收到这个请求时,我们使用 autograd_context_idautograd_message_id来查找适当的send函数。
    • 7)如果这是worker第一次收到对给定 autograd_context_id的请求,它将按照上面的第 1-3 点所述在本地计算依赖项。
    • 8)然后将在第6点接受到的send方法插入队列,以便在该worker的本地 autograd 引擎上执行。

    具体代码如下:

    c10::intrusive_ptr<c10::ivalue::Future> DistEngine::executeSendFunctionAsync(
        const ContextPtr& autogradContext,
        const std::shared_ptr<SendRpcBackward>& sendFunction,
        bool retainGraph) {
    
      // Typically the local autograd engine ensures stream synchronizations between
      // nodes in the graph. However, for distributed autograd the sendFunction
      // inputs might have been retrieved over the wire on a separate stream and the
      // sendFunction itself runs on a different stream. As a result, we need to
      // manually synchronize those two streams here.
      const auto& send_backward_stream = sendFunction->stream(c10::DeviceType::CUDA);
      if (send_backward_stream) { // 拿到本次执行对应的Stream
        for (const auto& grad : sendFunction->getGrads()) {
            const auto guard = c10::impl::VirtualGuardImpl{c10::DeviceType::CUDA};
            const auto default_stream = guard.getStream(grad.device());
            if (send_backward_stream != default_stream) {
              auto event = c10::Event{c10::DeviceType::CUDA};
              event.record(default_stream);
              send_backward_stream->wait(event); // 需要同步,保证当前操作完成
            }
        }
      }
    
      std::unique_lock<std::mutex> lock(initializedContextIdsLock_);
      if (initializedContextIds_.find(autogradContext->contextId()) ==
          initializedContextIds_.end()) { // 遍历,查找sendFunction对应的上下文是否在本节点之中已经记录
        // 没有找到上下文,需要计算依赖
        edge_list outputEdges;
        // Pass in a dummy graphRoot since all send functions are the roots.
        auto dummyRoot = std::make_shared<GraphRoot>(edge_list(), variable_list());
        computeDependencies( // 计算依赖
            autogradContext, {}, {}, dummyRoot, outputEdges, retainGraph);
    
        // Mark the autograd context id as initialized and unlock.
        initializedContextIds_.insert(autogradContext->contextId());
        lock.unlock();
    
        // Enqueue the current send function.
        auto graphTask = autogradContext->retrieveGraphTask();
        // Run the autograd engine.
        auto accumulateGradFuture = runEngineAndAccumulateGradients( // 计算梯度
            autogradContext,
            sendFunction,
            outputEdges,
            /*incrementOutstandingTasks=*/false);
    
        // Build the 'uber' future that waits for everything.
        auto callbackFuture =
            c10::make_intrusive<c10::ivalue::Future>(c10::NoneType::get());
        // 注册回调
        accumulateGradFuture->addCallback([autogradContext,
                                           callbackFuture](c10::ivalue::Future& accumulateGradFuture) {
          try {
            if (accumulateGradFuture.hasError()) {
              // Perform cleanup at the end of the backward pass (before we mark
              // the future as completed).
              DistEngine::getInstance().cleanupBackwardPass(autogradContext);
    
              // Skip any further processing on errors.
              callbackFuture->setError(accumulateGradFuture.exception_ptr());
              return;
            }
    
            // Wait for all RPCs after the autograd engine is done.
            auto rpcFuture = autogradContext->clearAndWaitForOutstandingRpcsAsync();
            rpcFuture->addCallback([callbackFuture, autogradContext](c10::ivalue::Future& rpcFuture) {
              try {
                // Perform cleanup at the end of the backward pass (before
                // we mark the future as completed).
                DistEngine::getInstance().cleanupBackwardPass(autogradContext);
              } catch (std::exception& e) {
                callbackFuture->setErrorIfNeeded(std::current_exception());
                return;
              }
    
              // Finally mark the 'uber' future as completed.
              if (!rpcFuture.hasError()) {
                callbackFuture->markCompleted(c10::IValue());
              } else {
                callbackFuture->setError(rpcFuture.exception_ptr());
              }
            });
          } catch (std::exception& e) {
            callbackFuture->setErrorIfNeeded(std::current_exception());
          }
        });
    
        // Return the future which waits for all async processing to be done.
        return callbackFuture;
      } else { // 可以在当前Node找到上下文
        lock.unlock();
        auto graphTask = autogradContext->retrieveGraphTask();
        at::launch([this, graphTask, sendFunction]() {
          execute_graph_task_until_ready_queue_empty(
              /*node_task*/ NodeTask(graphTask, sendFunction, InputBuffer(0)),
              /*incrementOutstandingTasks*/ false);
        });
        auto fut = c10::make_intrusive<c10::ivalue::Future>(c10::NoneType::get());
        fut->markCompleted(c10::IValue());
        return fut;
      }
    }
    

    具体如下图:

                                                                      +
                                                             worker 0 | worker 1
                                                                      |
      Engine            RecvRpcBackward              RpcAgent         |     RequestCallbackNoPython             DistEngine
        +                    +                          +             |              +                              +
        |                    |                          |             |              |                              |
        |                    |                          |             |              |                              |
    evaluate_function        |                          |             |              |                              |
        +                    |                          |             |              |                              |
        |                    |                          |             |              |                              |
        +                    |                          |             |              |                              |
      call_function          |                          |             |              |                              |
        +                    |                          |             |              |                              |
        |      grads         v                          |             |              |                              |
        +----------------> apply                        |             |              |                              |
        |                    +                          |             |              |                              |
        |                    |                          |             |              |                              |
        |                    +                          |             |              |                              |
        |                 gradCall                      |             |              |                              |
        |                    +                          |             |              |                              |
        |                    |  PropagateGradientsReq   |             |              |                              |
        |                    +------------------------> |             |              |                              |
        |                    |                          |             +              |                              |
        |                    |                          +   BACKWARD_AUTOGRAD_REQ    |                              |
        |                    |                        send  +---------+--------->    |                              |
        |                    |                          +             |              |                              |
        |                    |                          |             |              +                              |
        |                    |                          |             |     processBackwardAutogradReq              |
        |                    |                          |             |              +                              |
        |                    |                          |             |              |                              +
        |                    |                          |             |              +------------> executeSendFunctionAsync
        |                    |                          |             |              |                              +
        |                    |                          |             |              |                              |
        |                    |                          |             |              |                              |
        v                    v                          v             +              v                              v
    
    
    

    手机如下:

    0x04 DistAccumulateGradCaptureHook

    目前看起来总体逻辑已经完成了,但是实际上缺了一块,对应了设计文档中的:

    最后,我们不是在 Tensor的.grad之上累积梯度,而是在每个Distributed Autograd Context之上分别累积梯度 。梯度存储在Dict[Tensor, Tensor]之中 ,Dict[Tensor, Tensor]基本上是从 Tensor 到其关联梯度的映射,并且可以使用 get_gradients() API检索该映射 。

    就是把异地/本地的梯度累积到本地上下文之中,所以我们再分析一下 DistAccumulateGradCaptureHook。

    4.1 定义

    DistAccumulateGradCaptureHook 有三个作用:

    1. 调用原始AccumulateGrad的 pre hooks 来修改输入梯度。

    2. 将 grad 累积到RPC上下文。

    3. 调用原始AccumulateGrad的 post hooks。

    其定义如下:

    // This hook does 3 things:
    //   1. Call pre hooks of the original AccumulateGrad to modify the input grad.
    //   2. Accumuate the gard to RPC context.
    //   3. Call post hooks of the original AccumulateGrad.
    class DistAccumulateGradCaptureHook
        : public GraphTask::ExecInfo::Capture::GradCaptureHook {
     public:
      DistAccumulateGradCaptureHook(
          std::shared_ptr<AccumulateGrad> accumulateGrad,
          ContextPtr autogradContext)
          : accumulateGrad_(std::move(accumulateGrad)),
            autogradContext_(std::move(autogradContext)) {}
    
      at::Tensor operator()(const at::Tensor& grad) override {
        ThreadLocalDistAutogradContext contextGuard{ContextPtr(autogradContext_)};
        variable_list inputGrads = {grad};
        // It's intended that pre/post hooks are still called even if the grad is
        // undenfined here.
        for (const auto& hook : accumulateGrad_->pre_hooks()) {
          inputGrads = (*hook)(inputGrads); // 调用 pre-hooks
        }
    
        // It is possible that the grad is not defined since a separate
        // invocation of the autograd engine on the same node might actually
        // compute this gradient.
        if (inputGrads[0].defined()) {
          // There are 3 internal references to 'inputGrads[0]' at this moment:
          //   1. 'inputGrads[0]' in this function.
          //   2. 'graph_task->captured_vars_' on the callsite in the local engine.
          //   3. 'InputBuffer& inputs' on the callsite as the inputs of the
          //   function node.
          autogradContext_->accumulateGrad( // 累积梯度
              accumulateGrad_->variable, inputGrads[0], 3 /* num_expected_refs */);
        }
        const variable_list kEmptyOuput;
        for (const auto& hook : accumulateGrad_->post_hooks()) {
          (*hook)(kEmptyOuput, inputGrads); // 调用 post-hooks
        }
        return inputGrads[0];
      }
    
     private:
      std::shared_ptr<AccumulateGrad> accumulateGrad_; // 这就是需要累积的目标向量,后续操作在其之上
      ContextPtr autogradContext_;
    };
    

    4.2 生成

    如何生成 DistAccumulateGradCaptureHook?计算依赖时候生成 DistAccumulateGradCaptureHook,但是记录在 capture.hooks_.push_back 之中。

    这里是为了处理 AccumulateGrad。

    • AccumulateGrad 一定是叶子节点,不需执行,而需要在其上积累梯度,但是RecvRpcBackward需要执行。

    • AccumulateGrad 就保存在 DistAccumulateGradCaptureHook 之中。

    void DistEngine::computeDependencies(
        const ContextPtr& autogradContext,
        const edge_list& rootEdges,
        const variable_list& grads,
        const std::shared_ptr<Node>& graphRoot,
        edge_list& outputEdges,
        bool retainGraph) {
      
      if (!outputEdges.empty()) {
        // Compute 'needed execution' starting from all 'send' functions and the
        // original graphRoot.
        edge_list edges;
        // Create some dummy edges (input_nr not important for init_to_execute).
        for (const auto& mapEntry : sendFunctions) {
          edges.emplace_back(mapEntry.second, 0);
        }
    
        // Add the original graphRoot as an edge.
        edges.emplace_back(graphRoot, 0);
    
        // Create a dummy GraphRoot and run init_to_execute with it.
        GraphRoot dummyRoot(edges, {});
        graphTask->init_to_execute(dummyRoot, outputEdges, /*accumulate_grad=*/false, /*min_topo_nr=*/0);
        for (auto& mapEntry : graphTask->exec_info_) {
          auto& execInfo = mapEntry.second;
          if (!execInfo.captures_) {
            continue;
          }
          auto fn = mapEntry.first;
          // There may be nodes other than 'AccumulateGrad', e.g. RecvRPCBackward,
          // to be captured.
          if (auto accumulateGradFn = dynamic_cast<AccumulateGrad*>(fn)) {
            for (auto& capture : *execInfo.captures_) {
              capture.hooks_.push_back( // 这里会生成
                  std::make_unique<DistAccumulateGradCaptureHook>(
                      std::dynamic_pointer_cast<AccumulateGrad>( // 会保存 AccumulateGrad
                          accumulateGradFn->shared_from_this()),
                      autogradContext));
            }
          }
        }
    
        // Mark all 'RecvRPCBackward' as needing execution.
        for (const auto& recvBackwardEdge : recvBackwardEdges) {
          graphTask->exec_info_[recvBackwardEdge.function.get()].needed_ = true;
        }
      }  
    }
    

    4.3 使用

    代码是缩减版。

    首先,execute_graph_task_until_ready_queue_empty 会调用到原始引擎 engine_.evaluate_function。

    void DistEngine::execute_graph_task_until_ready_queue_empty(
        NodeTask&& node_task,
        bool incrementOutstandingTasks) {
    
      while (!cpu_ready_queue->empty()) {
        std::shared_ptr<GraphTask> local_graph_task;
        {
          NodeTask task = cpu_ready_queue->pop();
    
          if (task.fn_ && !local_graph_task->has_error_.load()) {
            AutoGradMode grad_mode(local_graph_task->grad_mode_);
            GraphTaskGuard guard(local_graph_task);
            engine_.evaluate_function( // 调用原始引擎
                  local_graph_task, task.fn_.get(), task.inputs_, cpu_ready_queue);
          }
        }
        // Decrement the outstanding task.
        --local_graph_task->outstanding_tasks_;
      }
    
    }
    

    其次,原始引擎代码之中,会调用hooks。

    void Engine::evaluate_function(
        std::shared_ptr<GraphTask>& graph_task,
        Node* func,
        InputBuffer& inputs,
        const std::shared_ptr<ReadyQueue>& cpu_ready_queue) {
      // If exec_info_ is not empty, we have to instrument the execution
      auto& exec_info_ = graph_task->exec_info_;
      if (!exec_info_.empty()) {
        auto& fn_info = exec_info_.at(func);
        if (auto* capture_vec = fn_info.captures_.get()) {
          // Lock mutex for writing to graph_task->captured_vars_.
          std::lock_guard<std::mutex> lock(graph_task->mutex_);
          for (const auto& capture : *capture_vec) {
            auto& captured_grad = graph_task->captured_vars_[capture.output_idx_];
            captured_grad = inputs[capture.input_idx_];
            for (auto& hook : capture.hooks_) {
              captured_grad = (*hook)(captured_grad); // 这里调用 hook,就是 DistAccumulateGradCaptureHook 的 operator(),captured_grad 就是累积的梯度
            }
          }
        }
      }
      
      // 后续省略
    

    DistAccumulateGradCaptureHook 的 operator() 方法之中,会调用下面来累积梯度。

      autogradContext_->accumulateGrad(
          accumulateGrad_->variable, inputGrads[0], 3 /* num_expected_refs */);
    

    4.4 累积梯度

    4.4.1 上下文累积

    void DistAutogradContext::accumulateGrad(
        const torch::autograd::Variable& variable, // variable就是目标变量
        const torch::Tensor& grad, // grad就是梯度,需要累积到variable之上
        size_t num_expected_refs) {
    
      std::lock_guard<std::mutex> guard(lock_);
      auto it = accumulatedGrads_.find(variable);
      at::Tensor old_grad;
      if (it != accumulatedGrads_.end()) {
        // Accumulate multiple grads on the same variable.
        old_grad = it->value();
      }
    
      // Gradients are computed using the forward streams. Local autograd
      // engine uses AccumulateGrad function to retrieve and apply forward
      // stream during the backward computation. In distributed autograd,
      // we directly call AccumulateGrad::accumulateGrad, and skip the
      // CUDA stream restoration from autograd function. Hence, we manually
      // call it here to get the streams correct.
      auto forward_stream =
          torch::autograd::impl::grad_accumulator(variable)->stream(
              grad.device().type());
      c10::OptionalStreamGuard stream_guard(forward_stream);
    
      // No higher order gradients supported in distributed autograd.
      AutoGradMode grad_mode(false);
      at::Tensor new_grad = AccumulateGrad::callHooks(variable, grad); // 计算
    
      AccumulateGrad::accumulateGrad( // 调用算子函数来累积梯度
          variable,
          old_grad,
          new_grad,
          // Add +1 here since we can't std::move(grad) when call
          // AccumulateGrad::callHooks, since it is a const ref, and that incurs a
          // refcount bump for the new_grad.
          num_expected_refs + 1,
          [this, &variable](at::Tensor&& grad_update) {
            auto device = grad_update.device();
            accumulatedGrads_.insert(variable, std::move(grad_update));
            recordGradEvent(device);
          });
    }
    

    4.4.2 算子累积

    代码位于 torch/csrc/autograd/functions/accumulate_grad.h。AccumulateGrad 的定义如下:

    struct TORCH_API AccumulateGrad : public Node {
      explicit AccumulateGrad(Variable variable_);
    
      variable_list apply(variable_list&& grads) override;
    
      static at::Tensor callHooks(
          const Variable& variable,
          at::Tensor new_grad) {
        for (auto& hook : impl::hooks(variable)) {
          new_grad = (*hook)({new_grad})[0];
        }
        return new_grad;
      }
    
      // Given a variable with its current grad as variable_grad, accumulates
      // new_grad into variable_grad if in place accumulation is possible.
      // Otherwise, uses 'update_grad' to update the grad for the variable.
    
      // "Gradient Layout Contract"
      //
      // AccumulateGrad tries to stash strided (non-sparse) grads with memory layout
      // (strides) such that variables and grads interact efficiently in later
      // optimizer kernels, and grads interact efficiently with c10d::Reducer.cpp.
      //
      // Specifically, AccumulateGrad tries to ensure the following
      // (cf torch/csrc/autograd/utils/grad_layout_contract.h):
      //   (1) if variable.is_non_overlapping_and_dense(), the stashed grad's
      //       strides match variable.
      //   (2) else, stashed grad is rowmajor contiguous.
      // If variable's grad does not exist (!variable_grad.defined())
      // AccumulateGrad steals new_grad if it's stealable and obeys the contract
      // already, otherwise it deep copies new_grad into an obedient clone.
      //
      // If variable's grad already exists (variable_grad.defined()), new_grad must
      // be added to variable_grad.  If we aren't setting up for double backward
      // (!GradMode::is_enabled()), AccumulateGrad performs "variable_grad += new_grad"
      // in-place, which keeps variable_grad's layout. We assume (hope) variable_grad
      // was created obeying (1) or (2) at some point in the past.
      //
      // If we are setting up for double backward, AccumulateGrad updates the grad
      // out-of-place via "variable_grad + new_grad."  TensorIterator operator+ decides
      // result's layout.  Typically TensorIterator matches strides of the first arg,
      // so we once again assume (hope) variable_grad was originally created obeying
      // (1) or (2).
      //
      // AccumulateGrad does not enforce the contract with 100% certainty.  Examples:
      //  - If a user manually permutes a param or its grad, then runs a fwd+bwd,
      //    variable_grad += new_grad keeps variable_grad's layout without rechecking
      //    the contract.
      //  - If TensorIterator changes its corner cases about operator+'s result
      //    (for example, giving more or less priority to channels_last inputs, see
      //    https://github.com/pytorch/pytorch/pull/37968) the result may not obey.
      //
      // Fortunately, if a given grad doesn't satisfy (1) or (2), the penalty is
      // degraded performance in Reducer.cpp or optimizer kernels, not death by
      // assert or silently bad numerics.
    
      // variable: the variable whose grad we're accumulating.
      // variable_grad: the current grad for the variable.
      // new_grad: new grad we want to acummulate for the variable.
      // num_expected_refs: the number of refs we expect to hold internally
      //                    such that it is safe to avoid cloning the grad
      //                    if use_count() of the grad is less than or equal
      //                    to this value (in addition to post_hooks).
      // update_grad: Function that is used to update grad for the variable.
      //              The argument to the function is a Tensor which
      //              is used to set a new value for the grad.
      template <typename T>
      static void accumulateGrad( // 这里会进行具体的累积梯度
          const Variable& variable,
          at::Tensor& variable_grad,
          const at::Tensor& new_grad,
          size_t num_expected_refs,
          const T& update_grad) {
        if (!variable_grad.defined()) {
          if (!GradMode::is_enabled() &&
              !new_grad.is_sparse() &&
              new_grad.use_count() <= num_expected_refs &&
              (new_grad.is_mkldnn() || utils::obeys_layout_contract(new_grad, variable))) {
            // we aren't setting up for double-backward
            // not sparse
            // no other user-visible tensor references new_grad
            // new_grad obeys the "Gradient Layout Contract", there has a special case,
            // For MKLDNN tensor, which is a opaque tensor, assuming it obeys layout_contract.
            // Under these conditions, we can steal new_grad without a deep copy.
            update_grad(new_grad.detach());
          } else if (
              !GradMode::is_enabled() && new_grad.is_sparse() &&
              new_grad._indices().is_contiguous() &&
              new_grad._values().is_contiguous() &&
              // Use count for indices and values should always be <=1 since the
              // SparseTensor should be the only one holding a reference to these.
              new_grad._indices().use_count() <= 1 &&
              new_grad._values().use_count() <= 1 &&
              new_grad.use_count() <= num_expected_refs) {
            // Can't detach sparse tensor (since metadata changes are not allowed
            // after detach), so just create a new one for the grad which is a
            // shallow copy. We need a shallow copy so that modifying the original
            // grad tensor doesn't modify the grad we accumulate.
            // We only skip clone if indices and values themselves are contiguous
            // for backward compatiblity reasons. Since without this optimization,
            // earlier we would clone the entire SparseTensor which cloned indices
            // and values.
            // For details see https://github.com/pytorch/pytorch/issues/34375.
            update_grad(at::_sparse_coo_tensor_unsafe(
                new_grad._indices(),
                new_grad._values(),
                new_grad.sizes(),
                new_grad.options()));
          } else {
            if (new_grad.is_sparse()) {
              update_grad(new_grad.clone());
            } else {
              if (new_grad.is_mkldnn()) {
                update_grad(new_grad.clone());
              } else {
                // Deep copies new_grad according to the "Gradient Layout Contract."
                update_grad(utils::clone_obey_contract(new_grad, variable));
              }
            }
          }
        } else if (!GradMode::is_enabled()) {
          // This case is not strictly necessary, but it makes the first-order only
          // case slightly more efficient.
          if (variable_grad.is_sparse() && !new_grad.is_sparse()) {
            // If `variable_grad` is sparse and `new_grad` is not sparse, their
            // sum is not sparse, and we must change the TensorImpl type of
            // `variable_grad` for it to store the result. However, changing the
            // TensorImpl type of a tensor requires changing the tensor itself, and
            // thus in this case we have to change the grad tensor.
            auto result = new_grad + variable_grad;
            CHECK_RESULT(result, variable);
            update_grad(std::move(result));
          } else if (!at::inplaceIsVmapCompatible(variable_grad, new_grad)) {
            // Ideally we'd perform an in-place operation to avoid changing
            // the grad tensor. However, if that's impossible because the grads
            // are vmap-incompatible (See NOTE: [vmap-incompatible in-place operations]),
            // then we just add them out-of-place.
            auto result = variable_grad + new_grad;
            CHECK_RESULT(result, variable);
            update_grad(std::move(result));
          } else {
            // In this case we can avoid changing the grad tensor. There are three
            // scenarios when we'll hit this case:
            //
            // 1. `variable_grad` is sparse, and `new_grad` is sparse.
            // 2. `variable_grad` is dense, and `new_grad` is sparse.
            // 3. `variable_grad` is dense, and `new_grad` is dense.
            // 4. `variable_grad` is mkldnn, and `new_grad` is mkldnn.
            //
            // In all of these four cases, `variable_grad += new_grad` is a
            // valid operation which adds `new_grad` to `variable_grad` in
            // place. `variable_grad` is thus still referring to the same tensor
            // after the operation.
            // Also DistributedDataParallel(DDP) package relies on grad being
            // mutated in place for saving peak memory usage. DDP will still
            // work correctly if it is mutated out of place here, but DDP will
            // maintain one extra copy of grad tensors in buffer and thus
            // increase peak memory usage.
            variable_grad += new_grad;
            CHECK_RESULT(variable_grad, variable);
            // ^ We could enforce the contract more aggressively here by writing:
            // if (variable_grad.is_sparse() || new_grad.is_sparse()) {
            //   variable_grad += new_grad;
            // } else if (obeys_layout_contract(variable_grad, variable)) {
            //   variable_grad += new_grad;
            // } else {
            //   result = at::empty_strided(variable.sizes(), variable.strides(),
            //                              variable.options().memory_format(c10::nullopt));
            //   update_grad(at::native::add_out(result, variable_grad, new_grad, 1.0);
            // }
            // However, that accumulation is sometimes in place and sometimes not,
            // which may break user code.
          }
        } else {
          at::Tensor result;
          if (variable_grad.is_sparse() && !new_grad.is_sparse()) {
            // CPU backend throws an error on sparse + dense, so prefer dense + sparse here.
            result = new_grad + variable_grad;
          } else {
            // Assumes operator+ result typically matches strides of first arg,
            // and hopes variable_grad was originally created obeying layout contract.
            result = variable_grad + new_grad;
          }
          CHECK_RESULT(result, variable);
          update_grad(std::move(result));
          // ^ We could enforce the contract more aggressively here by saying
          // if (obeys_layout_contract(new_grad, variable)) {
          //   update_grad(new_grad + variable_grad);
          // } else {
          //   update_grad(variable_grad + new_grad);
          // }
          // such that the stashed grad is likely to have the right strides if
          // either variable_grad or new_grad already has the right strides.
          // We could enforce the contract with certainty by saying
          // auto result = variable_grad + new_grad (or vice versa), checking result's
          // layout, and copying to an obedient clone if necessary before update_grad.
          // The copy would require another gmem pass.  We can't create empty result with
          // the right layout then add_out into it with a single kernel, because GradMode
          // is enabled in this branch, and add_out isn't differentiable.
          // Maybe more trouble than it's worth.
        }
      }
    
      Variable variable;
    };
    

    具体可以如下图所示,左边是数据结构,右面是算法流程,右面的序号表示执行从上至下,执行过程之中会用到左边的数据结构,算法与数据结构的调用关系由横向箭头表示。

    1. 分布式引擎调用execute_graph_task_until_ready_queue_empty来执行具体的 GraphTask。
    2. Engine::evaluate_function 会调用 GraphTask 之中的 ExecInfo。
    3. 然后会访问 GradCaptureHook,调用hook,hook 的 operator函数会调用到 autogradContext_->accumulateGrad。
    4. autogradContext_ 会执行 accumulateGrad,对 hook(DistAccumulateGradCaptureHook)之中保存的 accumulateGrad_ 做操作。
    5. AccumulateGrad::accumulateGrad 会完成最终的梯度更新操作。
                                         DATA STRUCTURE   +  ALGORITHM
                                                          |
    +-----------------------------------------------+     |
    | GraphTask                                     |     |  DistEngine::execute_graph_task_until_ready_queue_empty
    |                                               |     |      +                |
    |   unordered_map<Node*, ExecInfo> exec_info_   |     |      |                |
    |                            +                  | <----------+                |
    |                            |                  |     |                       |
    +-----------------------------------------------+     |                       | 1
                                 |                        |                       |
                                 |                        |                       |
                                 v                        |                       |
           +---------------------+------------------+     |                       v
           | ExecInfo                               | <-------------+  Engine::evaluate_function
           |                                        |     |                       +
           |       < vector<Capture> > captures_    |     |                       |
           |                   +                    |     |                       |
           |                   |                    |     |                       | 2
           +----------------------------------------+     |                       |
                               |                          |                       v
                               |                          |
                               v                          |      +--+ captured_grad = (*hook)(captured_grad)
           +-------------------+--------------------+     |      |                +
           | Capture                                |     |      |                |
           |                                        |     |      |                |
           |   vector< <GradCaptureHook> > hooks_ <--------------+                | 3
           |                   +                    |     |                       |
           +----------------------------------------+     |                       v
                               |                          |
                               |                          |   +--+ autogradContext_->accumulateGrad(
                               v                          |   |         accumulateGrad_-> variable, inputGrads[0], 3)
           +-------------------+--------------------+     |   |                   +
           | DistAccumulateGradCaptureHook          |     |   |                   |
           |                                        |     |   |                   |
           |      ContextPtr autogradContext_    <------------+                   | 4
           |                                        |     |   |                   |
           |      AccumulateGrad accumulateGrad_ <------------+                   v
           |                          +             |     |
           +----------------------------------------+     |   +-+ new_grad = AccumulateGrad::callHooks(variable, grad)
                                      |                   |   |                   +
                                      |                   |   |                   |
                                      v                   |   |                   | 5
                  +-------------------+------+            |   |                   v
                  | AccumulateGrad           |            |   |
                  |                          |            |   |      AccumulateGrad::accumulateGrad(
                  |      Variable variable <------------------+------+   variable, old_grad, new_grad,)
                  |                          |            |
                  +--------------------------+            +
    

    手机如下:

    0x05 等待完成

    最后,分布式引擎会调用 clearAndWaitForOutstandingRpcsAsync 来等待处理完成。

    c10::intrusive_ptr<c10::ivalue::Future> DistAutogradContext::
        clearAndWaitForOutstandingRpcsAsync() {
      std::unique_lock<std::mutex> lock(lock_);
      auto outStandingRpcs = std::move(outStandingRpcs_);
      lock.unlock();
    
      struct State {
        explicit State(int32_t count)
            : future(
                  c10::make_intrusive<c10::ivalue::Future>(c10::NoneType::get())),
              remaining(count) {}
        c10::intrusive_ptr<c10::ivalue::Future> future;
        std::atomic<int32_t> remaining;
        std::atomic<bool> alreadySentError{false};
      };
      auto state = std::make_shared<State>(outStandingRpcs.size());
      if (outStandingRpcs.empty()) {
        state->future->markCompleted(c10::IValue());
      } else {
        for (auto& rpc : outStandingRpcs) {
          rpc->addCallback([state](rpc::JitFuture& future) {
            if (future.hasError()) {
              // If there's an error, we want to setError() on the future,
              // unless another error has already been sent - use a CAS to
              // guard.
              //
              // Don't decrement num remaining here! (We don't need to, since
              // memory handling is separate). If we simply don't decrement on
              // errors, reaching 0 means that there were no errors - and hence,
              // we can just markCompleted() without any other checking there.
              bool expectedAlreadySent = false;
              if (state->alreadySentError.compare_exchange_strong(
                      expectedAlreadySent, true)) {
                state->future->setError(future.exception_ptr());
              }
              return;
            }
    
            if (--state->remaining == 0) {
              state->future->markCompleted(c10::IValue());
            }
          });
        }
      }
      return state->future;
    }
    

    支持,分布式 autograd 全部分析完毕,前面说过,分布式处理有四大金刚,我们简介了 RPC,RRef,分析了分布式引擎,从下一篇开始,我们开始分析剩下的分布式优化器,此系列可能包括4~6篇。

    0xFF 参考

    Distributed Autograd Design

    Remote Reference Protocol

    PyTorch 源码解读之分布式训练了解一下?

    https://pytorch.org/docs/stable/distributed.html

    https://pytorch.apachecn.org/docs/1.7/59.html

    https://pytorch.org/docs/stable/distributed.html#module-torch.distributed

    https://pytorch.org/docs/master/notes/autograd.html

    https://pytorch.org/docs/master/rpc/distributed_autograd.html
    https://pytorch.org/docs/master/rpc/rpc.html

    https://www.w3cschool.cn/pytorch/pytorch-cdva3buf.html

    PyTorch 分布式 Autograd 设计

    Getting started with Distributed RPC Framework

    Implementing a Parameter Server using Distributed RPC Framework

    Combining Distributed DataParallel with Distributed RPC Framework

    Profiling RPC-based Workloads

    Implementing batch RPC processing

    Distributed Pipeline Parallel

  • 相关阅读:
    iOS--通讯录、蓝牙、内购、GameCenter、iCloud、Passbook等系统服务开发汇总
    iOS-网络爬虫
    iOS-性能优化
    iOS开发——网络实用技术OC篇&网络爬虫-使用青花瓷抓取网络数据
    深入解析Linux内核及其相关架构的依赖关系
    详解Linux系统中的文件名和文件种类以及文件权限
    Linux系统中使用netcat命令的奇技淫巧
    Linux系统下强大的lsof命令使用宝典
    Linux下多线程下载工具MWget和Axel使用介绍
    Linux下针对路由功能配置iptables的方法详解
  • 原文地址:https://www.cnblogs.com/rossiXYZ/p/15646816.html
Copyright © 2011-2022 走看看