zoukankan      html  css  js  c++  java
  • Regularization: how complicated the model is? Regularization, measures complexity of model 使预测准确、平稳 predictive stable

    http://www.kdd.org/kdd2016/papers/files/rfp0697-chenAemb.pdf

    https://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf

    【Training Loss measures how well model fit on training data】

    【Regularization, measures complexity of model】

    【simple】

    【predictive】

    • Why do we want to contain two component in the objective?

    • Optimizing training loss encourages predictive models

     Fitting well in training data at least get you close to training data which is hopefully close to the underlying distribution

    • Optimizing regularization encourages simple models

     Simpler models tends to have smaller variance in future predictions, making prediction stable

    【训练损失:量化对点的拟合度】 

    Training Loss: How will the function fit on the points?

    【泛化、正则化:量化复杂度、通用性】

    Regularization: How do we define complexity of the function?

  • 相关阅读:
    YOLO V5
    YOLO系列(单阶段目标检测)
    优化算法
    算法总结
    图像分类算法
    ResNet网络(里程碑)
    GoogleNet网络(纵横交错)
    VGGNet网络(走向深度)
    AlexNet网络(开山之作)
    案例
  • 原文地址:https://www.cnblogs.com/rsapaper/p/7611545.html
Copyright © 2011-2022 走看看