zoukankan      html  css  js  c++  java
  • Spanner: Google’s Globally-Distributed Database

    https://research.google.com/archive/spanner.html

    Spanner is Google’s scalable, multi-version, globally-
    distributed, and synchronously-replicated database. It is
    the first system to distribute data at global scale and sup-
    port externally-consistent distributed transactions. This
    paper describes how Spanner is structured, its feature set,
    the rationale underlying various design decisions, and a
    novel time API that exposes clock uncertainty. This API
    and its implementation are critical to supporting exter-
    nal consistency and a variety of powerful features: non-
    blocking reads in the past, lock-free read-only transac-
    tions, and atomic schema changes, across all of Spanner.
     
     
    【managing cross-datacenter replicated data】
     
    Spanner is a scalable, globally-distributed database de-
    signed, built, and deployed at Google. At the high-
    est level of abstraction, it is a database that shards data
    across many sets of Paxos [21] state machines in data-
    centers spread all over the world. Replication is used for
    global availability and geographic locality; clients auto-
    matically failover between replicas. Spanner automati-
    cally reshards data across machines as the amount of data
    or the number of servers changes, and it automatically
    migrates data across machines (even across datacenters)
    to balance load and in response to failures. Spanner is
    designed to scale up to millions of machines across hun-
    dreds of datacenters and trillions of database rows.
     
     
    Applications can use Spanner for high availability,
    even in the face of wide-area natural disasters, by repli-
    cating their data within or even across continents. Our
    initial customer was F1 [35], a rewrite of Google’s ad-
    vertising backend. F1 uses five replicas spread across
    the United States. Most other applications will probably
    replicate their data across 3 to 5 datacenters in one ge-
    ographic region, but with relatively independent failure
    modes. That is, most applications will choose lower la-
    tency over higher availability, as long as they can survive
    1 or 2 datacenter failures.
     
    Spanner’s main focus is managing cross-datacenter
    replicated data, but we have also spent a great deal of
    time in designing and implementing important database
    features on top of our distributed-systems infrastructure.
    Even though many projects happily use Bigtable [9], we
    have also consistently received complaints from users
    that Bigtable can be difficult to use for some kinds of ap-
    plications: those that have complex, evolving schemas,
    or those that want strong consistency in the presence of
    wide-area replication. (Similar claims have been made
    by other authors [37].) Many applications at Google
    have chosen to use Megastore [5] because of its semi-
    relational data model and support for synchronous repli-
    cation, despite its relatively poor write throughput. As a
    consequence, Spanner has evolved from a Bigtable-like
    versioned key-value store into a temporal multi-version
    database. Data is stored in schematized semi-relational
    tables; data is versioned, and each version is automati-
    cally timestamped with its commit time; old versions of
    data are subject to configurable garbage-collection poli-
    cies; and applications can read data at old timestamps.
    Spanner supports general-purpose transactions, and pro-
    vides a SQL-based query language.
     
     
     
     
     
     
  • 相关阅读:
    区块链技术的自我见解
    Nengo 神经网络
    elasticsearch更新操作问题
    elasticsearch httpclient认证机制
    spring 常见的注解
    elasticsearch插入索引文档 对数字字符串的处理
    Elasticsearch搜索含有数字标签的处理
    Elasticsearch 插入地理索引文档一直为空
    UVA-10163 Storage Keepers (0-1背包)
    UVA-1632 Alibaba (区间DP+滚动数组)
  • 原文地址:https://www.cnblogs.com/rsapaper/p/7678885.html
Copyright © 2011-2022 走看看