zoukankan      html  css  js  c++  java
  • 半参数模型

    半参数模型

    Semiparametric model - Wikipedia  https://en.wikipedia.org/wiki/Semiparametric_model

    In statistics, a semiparametric model is a statistical model that has parametric and nonparametric components.

    A statistical model is a collection of distributions: {displaystyle {P_{ heta }: heta in Theta }}{P_{	heta }:	heta in Theta } indexed by a parameter {displaystyle heta }	heta .

    • parametric model is one in which the indexing parameter is a finite-dimensional vector (in {displaystyle k}k-dimensional Euclidean space for some integer {displaystyle k}k); i.e. the set of possible values for {displaystyle heta }	heta  is a subset of {displaystyle mathbb {R} ^{k}}mathbb {R} ^{k}, or {displaystyle Theta subset mathbb {R} ^{k}}Theta subset {mathbb  {R}}^{k}. In this case we say that {displaystyle heta }	heta  is finite-dimensional.
    • In nonparametric models, the set of possible values of the parameter {displaystyle heta }	heta  is a subset of some space, not necessarily finite-dimensional. For example, we might consider the set of all distributions with mean 0. Such spaces are vector spaces with topological structure, but may not be finite-dimensional as vector spaces. Thus, {displaystyle Theta subset mathbb {F} }Theta subset {mathbb  {F}} for some possibly infinite-dimensional space {displaystyle mathbb {F} }mathbb {F} .
    • In semiparametric models, the parameter has both a finite-dimensional component and an infinite-dimensional component (often a real-valued function defined on the real line). Thus the parameter space {displaystyle Theta }Theta  in a semiparametric model satisfies {displaystyle Theta subset mathbb {R} ^{k} imes mathbb {F} }Theta subset {mathbb  {R}}^{k}	imes {mathbb  {F}}, where {displaystyle mathbb {F} }mathbb {F}  is an infinite-dimensional space.

    It may appear at first that semiparametric models include nonparametric models, since they have an infinite-dimensional as well as a finite-dimensional component. However, a semiparametric model is considered to be "smaller" than a completely nonparametric model because we are often interested only in the finite-dimensional component of {displaystyle heta }	heta . That is, we are not interested in estimating the infinite-dimensional component. In nonparametric models, by contrast, the primary interest is in estimating the infinite-dimensional parameter. Thus the estimation task is statistically harder in nonparametric models.

    These models often use smoothing or kernels.

  • 相关阅读:
    jsp引擎是什么
    asp.net MVC遇到的问题
    java中设置http响应头控制浏览器禁止缓存当前文档内容
    java中文件下载的思路(参考:孤傲苍狼)
    301与302页面重定向
    怎么在后台修改前台html页面的key、title、description
    进程外session(session保存在sqlserver)
    Cookie的读写
    HTTP 方法:GET 对比 POST 转自w3school
    位bit,字节byte,K,M,G(转)
  • 原文地址:https://www.cnblogs.com/rsapaper/p/8682622.html
Copyright © 2011-2022 走看看