zoukankan      html  css  js  c++  java
  • 单源最短距离 Single Source Shortest Path

    单源最短距离_示例程序_图模型_用户指南_MaxCompute-阿里云 https://help.aliyun.com/document_detail/27907.html

    单源最短距离

    更新时间:2018-06-08 22:48:48

    Dijkstra 算法是求解有向图中单源最短距离(Single Source Shortest Path,简称为 SSSP)的经典算法。

    最短距离:对一个有权重的有向图 G=(V,E),从一个源点 s 到汇点 v 有很多路径,其中边权和最小的路径,称从 s 到 v 的最短距离。

    算法基本原理,如下所示:
    • 初始化:源点 s 到 s 自身的距离(d[s]=0),其他点 u 到 s 的距离为无穷(d[u]=∞)。
    • 迭代:若存在一条从 u 到 v 的边,那么从 s 到 v 的最短距离更新为:d[v]=min(d[v], d[u]+weight(u, v)),直到所有的点到 s 的距离不再发生变化时,迭代结束。

    由算法基本原理可以看出,此算法非常适合使用 MaxCompute Graph 程序进行求解:每个点维护到源点的当前最短距离值,当这个值变化时,将新值加上边的权值发送消息通知其邻接点,下一轮迭代时,邻接点根据收到的消息更新其当前最短距离,当所有点当前最短距离不再变化时,迭代结束。

    代码示例

    单源最短距离的代码,如下所示:
     
    import java.io.IOException;
    
    import com.aliyun.odps.io.WritableRecord;
    import com.aliyun.odps.graph.Combiner;
    import com.aliyun.odps.graph.ComputeContext;
    import com.aliyun.odps.graph.Edge;
    import com.aliyun.odps.graph.GraphJob;
    import com.aliyun.odps.graph.GraphLoader;
    import com.aliyun.odps.graph.MutationContext;
    import com.aliyun.odps.graph.Vertex;
    import com.aliyun.odps.graph.WorkerContext;
    import com.aliyun.odps.io.LongWritable;
    import com.aliyun.odps.data.TableInfo;
    
    public class SSSP {
    
      public static final String START_VERTEX = "sssp.start.vertex.id";
    
      public static class SSSPVertex extends
          Vertex<LongWritable, LongWritable, LongWritable, LongWritable> {
    
        private static long startVertexId = -1;
    
        public SSSPVertex() {
          this.setValue(new LongWritable(Long.MAX_VALUE));
        }
    
        public boolean isStartVertex(
            ComputeContext<LongWritable, LongWritable, LongWritable, LongWritable> context) {
          if (startVertexId == -1) {
            String s = context.getConfiguration().get(START_VERTEX);
            startVertexId = Long.parseLong(s);
          }
          return getId().get() == startVertexId;
        }
    
        @Override
        public void compute(
            ComputeContext<LongWritable, LongWritable, LongWritable, LongWritable> context,
            Iterable<LongWritable> messages) throws IOException {
          long minDist = isStartVertex(context) ? 0 : Integer.MAX_VALUE;
          for (LongWritable msg : messages) {
            if (msg.get() < minDist) {
              minDist = msg.get();
            }
          }
    
          if (minDist < this.getValue().get()) {
            this.setValue(new LongWritable(minDist));
            if (hasEdges()) {
              for (Edge<LongWritable, LongWritable> e : this.getEdges()) {
                context.sendMessage(e.getDestVertexId(), new LongWritable(minDist
                    + e.getValue().get()));
              }
            }
          } else {
            voteToHalt();
          }
        }
    
        @Override
        public void cleanup(
            WorkerContext<LongWritable, LongWritable, LongWritable, LongWritable> context)
            throws IOException {
          context.write(getId(), getValue());
        }
      }
    
      public static class MinLongCombiner extends
          Combiner<LongWritable, LongWritable> {
    
        @Override
        public void combine(LongWritable vertexId, LongWritable combinedMessage,
            LongWritable messageToCombine) throws IOException {
          if (combinedMessage.get() > messageToCombine.get()) {
            combinedMessage.set(messageToCombine.get());
          }
        }
    
      }
    
      public static class SSSPVertexReader extends
          GraphLoader<LongWritable, LongWritable, LongWritable, LongWritable> {
    
        @Override
        public void load(
            LongWritable recordNum,
            WritableRecord record,
            MutationContext<LongWritable, LongWritable, LongWritable, LongWritable> context)
            throws IOException {
          SSSPVertex vertex = new SSSPVertex();
          vertex.setId((LongWritable) record.get(0));
          String[] edges = record.get(1).toString().split(",");
          for (int i = 0; i < edges.length; i++) {
            String[] ss = edges[i].split(":");
            vertex.addEdge(new LongWritable(Long.parseLong(ss[0])),
                new LongWritable(Long.parseLong(ss[1])));
          }
    
          context.addVertexRequest(vertex);
        }
    
      }
    
      public static void main(String[] args) throws IOException {
        if (args.length < 2) {
          System.out.println("Usage: <startnode> <input> <output>");
          System.exit(-1);
        }
    
        GraphJob job = new GraphJob();
        job.setGraphLoaderClass(SSSPVertexReader.class);
        job.setVertexClass(SSSPVertex.class);
        job.setCombinerClass(MinLongCombiner.class);
    
        job.set(START_VERTEX, args[0]);
        job.addInput(TableInfo.builder().tableName(args[1]).build());
        job.addOutput(TableInfo.builder().tableName(args[2]).build());
    
        long startTime = System.currentTimeMillis();
        job.run();
        System.out.println("Job Finished in "
            + (System.currentTimeMillis() - startTime) / 1000.0 + " seconds");
      }
    }
    
    上述代码,说明如下:
    • 第 19 行:定义 SSSPVertex ,其中:
      • 点值表示该点到源点 startVertexId 的当前最短距离。
      • compute() 方法使用迭代公式:d[v]=min(d[v], d[u]+weight(u, v)) 更新点值。
      • cleanup() 方法把点及其到源点的最短距离写到结果表中。
    • 第 58 行:当点值没发生变化时,调用 voteToHalt() 告诉框架该点进入 halt 状态,当所有点都进入 halt 状态时,计算结束。
    • 第 70 行:定义 MinLongCombiner,对发送给同一个点的消息进行合并,优化性能,减少内存占用。
    • 第 83 行:定义 SSSPVertexReader 类,加载图,将表中每一条记录解析为一个点,记录的第一列是点标识,第二列存储该点起始的所有的边集,内容如:2:2,3:1,4:4。
    • 第 106 行:主程序(main 函数),定义 GraphJob,指定 Vertex/GraphLoader/Combiner 等的实现,指定输入输出表。
  • 相关阅读:
    WEB专用服务器的安全设置的实战技巧IIS设置
    Mysql服务无法启动的1067错误解决
    mysql noinstall 安装
    由于无法创建应用程序域,因此未能执行请求解决方案汇总
    黑客经验谈系列之入侵3389起源完整篇
    几个js写word的参考
    WIndows系统下安装mysqlnoinstall版本
    用微软安全工具加固网站安全 (URLScan Tool & IIS Lock Tool)
    Windows 2000 网络服务器安装完全手册
    工作五年的大佬分享他做实习生的那些感悟
  • 原文地址:https://www.cnblogs.com/rsapaper/p/9803818.html
Copyright © 2011-2022 走看看