zoukankan      html  css  js  c++  java
  • 简单数学刷题

    P1414 又是毕业季II

    把每个数的所有因数都枚举出来,假设因数为i,则让cnt[i]++。

    根据选x+1个数的gcd小于等于选x个数的gcd

        for (int i = 1; i <= n; i++)//先枚举选几个人
        {
            while (mx > 0 && cnt[mx] < i)//然后从最大的因数往小的枚举可以选出的情况
                mx--;
            cout << mx << endl;
        }
    

    一定能通过这样把所有i的情况找到:
    如果极端情况所有数都是质数,由于cnt[1]==k,因此除了i=1会输出最大数以外,其他都会输出1.

    #include<bits/stdc++.h>
    using namespace std;
    #define ll long long
    #define fastio ios::sync_with_stdio(false),cin.tie(NULL),cout.tie(NULL)
    #define pii pair<int,int>
    const int inf = 1e9 + 7;
    const ll lnf = 1e18 + 7;
    const int maxn = 2e6 + 10;
    ll mod = 1e9 + 7;
    double eps = 1e-6;
    
    int gcd(int a, int b)
    {
        return b ? gcd(b, a % b) : a;
    }
    
    int cnt[maxn];
    
    int main()
    {
        fastio;
        int n;
        cin >> n;
        int mx = 0;
        for (int t = 1; t <= n; t++)
        {
            int x;
            cin >> x;
            mx = max(x, mx);
            for (int i = 1; i * i <= x; i++)
            {
                if (x % i == 0)
                {
                    cnt[i]++;
                    if (i * i != x)
                        cnt[x / i]++;
                }
            }
        }
        for (int i = 1; i <= n; i++)
        {
            while (mx > 0 && cnt[mx] < i)
                mx--;
            cout << mx << endl;
        }
        return 0;
    
    }
    

    CF757B Bash's Big Day

    同上,只不过要找cnt[i]不等于1的最大cnt[i]

    #include<bits/stdc++.h>
    using namespace std;
    #define ll long long
    #define fastio ios::sync_with_stdio(false),cin.tie(NULL),cout.tie(NULL)
    #define pii pair<int,int>
    const int inf = 1e9 + 7;
    const ll lnf = 1e18 + 7;
    const int maxn = 1e6 + 10;
    ll mod = 1e9 + 7;
    double eps = 1e-6;
    
    int cnt[maxn];
    
    int main()
    {
        fastio;
        int n;
        cin >> n;
        int mx = 0;
        while (n--)
        {
            int x;
            cin >> x;
            mx = max(x, mx);
            for (int i = 1; i * i <= x; i++)
            {
                if (x % i == 0)
                {
                    cnt[i]++;
                    if (x / i != i)
                        cnt[x / i]++;
                }
            }
        }
        int ans = 1;
        for (int i = 2; i <= mx; i++)
            ans = max(ans, cnt[i]);
        cout << ans << endl;
        return 0;
    
    }
    

    P1029 [NOIP2001 普及组] 最大公约数和最小公倍数问题

    (x0*y0=P*Q)

    直接暴力枚举即可

    #include<bits/stdc++.h>
    using namespace std;
    #define ll long long
    #define fastio ios::sync_with_stdio(false),cin.tie(NULL),cout.tie(NULL)
    #define pii pair<int,int>
    const int inf = 1e9 + 7;
    const ll lnf = 1e18 + 7;
    const int maxn = 2e6 + 10;
    ll mod = 1e9 + 7;
    double eps = 1e-6;
    
    int gcd(int a, int b)
    {
        return b ? gcd(b, a % b) : a;
    }
    
    int main()
    {
        fastio;
        int a, b;
        cin >> a >> b;
        int c = a * b;
        int ans = 0;
        for (int i = 1; i * i <= c; i++)
        {
            if (c % i == 0)
            {
                int j = c / i;
                if (gcd(i, j) == a)
                {
                    ans++;
                    if (i * i != c)
                        ans++;
                }
            }
        }
        cout << ans;
        return 0;
    
    }
    

    P1072 [NOIP2009 提高组] Hankson 的趣味题

    image

    然后(x|b_1),枚举x即可,复杂度n*sqrt(b1)

    #include<bits/stdc++.h>
    using namespace std;
    #define ll long long
    #define fastio ios::sync_with_stdio(false),cin.tie(NULL),cout.tie(NULL)
    #define pii pair<int,int>
    const int inf = 1e9 + 7;
    const ll lnf = 1e18 + 7;
    const int maxn = 2e6 + 10;
    ll mod = 1e9 + 7;
    double eps = 1e-6;
    
    ll gcd(ll a, ll b)
    {
        return b ? gcd(b, a % b) : a;
    }
    
    int main()
    {
        fastio;
        int t;
        cin >> t;
        while (t--)
        {
            ll a0, a1, b0, b1;
            cin >> a0 >> a1 >> b0 >> b1;
            if (b1 % b0 || a0 % a1) {
                cout << 0 << "
    ";
                continue;
            }
            int ans = 0;
            for (ll x = 1; x * x <= b1; x++)
                if (b1 % x == 0)
                {
                    if (x % a1 == 0 && gcd(x / a1, a0 / a1) == 1 && gcd(b1 / b0, b1 / x) == 1)
                        ans++;
                    ll y = b1 / x;
                    if (x == y|| y % a1)continue;
                    if (gcd(y / a1, a0 / a1) == 1 && gcd(b1 / b0, b1 / y) == 1)
                        ans++;
                }
            cout << ans << "
    ";
        }
        return 0;
    
    }
    

    CF687B Remainders Game

    暴力做法,直接递推lcm取模:

    #include<bits/stdc++.h>
    using namespace std;
    #define ll long long
    #define fastio ios::sync_with_stdio(false),cin.tie(NULL),cout.tie(NULL)
    #define pii pair<int,int>
    const int inf = 1e9 + 7;
    const ll lnf = 1e18 + 7;
    const int maxn = 1e6 + 10;
    ll mod = 1e9 + 7;
    double eps = 1e-6;
    
    ll gcd(ll a, ll b)
    {
        return b ? gcd(b, a % b) : a;
    }
    
    ll lcm(ll a, ll b)
    {
        return a / gcd(a, b) * b;
    }
    
    int main()
    {
        fastio;
        ll n, k;
        cin >> n >> k;
        ll l = 1;
        while (n--)
        {
            ll x;
            cin >> x;
            l = lcm(x, l) % k;
            if (!l)
                break;
        }
        if (l)
            cout << "No";
        else cout << "Yes";
        return 0;
    
    }
    

    某个复杂做法:
    由于(lcm \% k==0),只需要去check所有与k有相同质因子的数x中的每一个质因子:

    假设这个质因子是p,去看是否cntx[p]>=cntk[p](x中p的个数是否大于k中p的个数),如果可以就凑出了k中的一种质因子(一定要一次全部凑出来,因为lcm的每个素因子个数等于所有数这个素因子个数的max)

    最后看看k是不是1就知道能不能凑出k

    #include<bits/stdc++.h>
    using namespace std;
    #define ll long long
    #define fastio ios::sync_with_stdio(false),cin.tie(NULL),cout.tie(NULL)
    #define pii pair<int,int>
    const int inf = 1e9 + 7;
    const ll lnf = 1e18 + 7;
    const int maxn = 1e6 + 10;
    ll mod = 1e9 + 7;
    double eps = 1e-6;
    
    ll gcd(ll a, ll b)
    {
        return b ? gcd(b, a % b) : a;
    }
    
    int v[maxn], p[maxn], cnt;
    
    //bool v[maxn];卡常请把v改成1降低常数
    
    void init_e()
    {
        memset(v, 0, sizeof(v));
        cnt = 0;
    }
    
    void Euler_sieve(int n)
    {
        init_e();
        cnt = 0;
        for (int i = 2; i <= n; i++) {
            if (v[i] == 0) { v[i] = i; p[++cnt] = i; }
            for (int j = 1; j <= cnt; j++)
            {
                if (p[j] > v[i] || p[j] > n / i)break;
                v[i * p[j]] = p[j];
            }
        }
    }
    
    
    
    int main()
    {
        int n, k;
        scanf("%d %d", &n, &k);
        Euler_sieve(1e6);
        while (n--)
        {
            int x;
            scanf("%d", &x);
            while (x > 1)
            {
                int i = v[x];
                int tmp = 1;
                int flag = -1;
                if (k % i == 0)flag = 0;
                while (x % i == 0)
                {
                    x /= i;
                    if (flag == 0)
                    {
                        tmp *= i;
                        if (k % tmp == 0 && k % (tmp * i))
                        {
                            k /= tmp;
                            flag = 1;
                        }
                    }
                }
            }
        }
        if (k > 1)
            printf("No");
        else printf("Yes");
        return 0;
    
    }
    

    CF664A Complicated GCD

    (gcd(i,i+1)==1),水题

    CF762A k-th divisor

    暴力分解

    #include<bits/stdc++.h>
    using namespace std;
    #define ll long long
    #define fastio ios::sync_with_stdio(false),cin.tie(NULL),cout.tie(NULL)
    #define pii pair<int,int>
    const int inf = 1e9 + 7;
    const ll lnf = 1e18 + 7;
    const int maxn = 1e6 + 10;
    ll mod = 1e9 + 7;
    double eps = 1e-6;
    
    vector<ll>yz;
    
    int main()
    {
        ll n, k;
        cin >> n >> k;
        ll lim = sqrt(n);
        for (int i = 1; i <= lim; i++)
        {
            if (n % i == 0)
                yz.push_back(i);
        }
        for (int i=yz.size()-1;i>=0;i--)
        {
            if (n / yz[i] != yz[i])
                yz.push_back(n / yz[i]);
        }
        if (k > yz.size())
            cout << -1 << endl;
        else cout << yz[k - 1] << endl;
        return 0;
    
    }
    

    CF776B Sherlock and his girlfriend

    构造,素数涂1合数涂0

    #include<bits/stdc++.h>
    using namespace std;
    #define ll long long
    #define fastio ios::sync_with_stdio(false),cin.tie(NULL),cout.tie(NULL)
    #define pii pair<int,int>
    const int inf = 1e9 + 7;
    const ll lnf = 1e18 + 7;
    const int maxn = 1e6 + 10;
    ll mod = 1e9 + 7;
    double eps = 1e-6;
    
    int p[maxn], v[maxn], cnt = 0;
    
    void elshai(int n)
    {
        for (int i = 2; i <= n; i++)
        {
            if (!v[i]) 
                p[++cnt] = i, v[i] = i;
            for (int j = 1; j <= cnt; j++)
            {
                if (p[j] > v[i] || p[j] > n / i)break;
                v[i * p[j]] = p[j];
            }
        }
    }
    
    int col[maxn], ans = 0;
    
    int main()
    {
        fastio;
        elshai(1e6 + 5);
        int n;
        cin >> n;
        int ans = 1;
        for (int i = 2; i <= n + 1; i++)
        {
            col[i] = (v[i] == i ? 1 : 2);
            if (col[i] == 2)
                ans = 2;
        }
        cout << ans << endl;
        for (int i = 2; i <= n + 1; i++)
            cout << col[i]<<" ";
        return 0;
    
    }
    

    P5431 【模板】乘法逆元2

    不算模版题。由于n<=5e6需要先预处理,把求和式子通分,然后求前缀后缀积,最后求逆元。(还要加个快读,数组也不能全ll,因为空间只有128MB)

    #include<bits/stdc++.h>
    using namespace std;
    #define ll long long
    #define fastio ios::sync_with_stdio(false),cin.tie(NULL),cout.tie(NULL)
    #define pii pair<int,int>
    const int inf = 1e9 + 7;
    const ll lnf = 1e18 + 7;
    const int maxn = 5e6 + 10;
    ll mod = 1e9 + 7;
    double eps = 1e-6;
    
    int gcd(int a, int b)
    {
        return b ? gcd(b, a % b) : a;
    }
    
    int read()
    {
        int x = 0, f = 1;
        char c = getchar();
        while (c < '0' || c>'9') { if (c == '-') f = -1; c = getchar(); }
        while (c >= '0' && c <= '9') x = (x << 1) + (x << 3) + c - '0', c = getchar();
        return f * x;
    }
    
    int qpow(int x, int y)
    {
        x %= mod;
        ll res = 1;
        while (y)
        {
            if (y & 1)res = res * x % mod;
            x = 1ll * x * x % mod;
            y >>= 1;
        }
        return res%mod;
    }
    
    int inv(int x)
    {
        return qpow(x, mod - 2) % mod;
    }
    
    ll a[maxn];
    int pre[maxn], suf[maxn], K[maxn];
    
    int main()
    {
        //fastio;
        ll n,  k;
        n = read(), mod = read(), k = read();
        pre[0] = suf[n + 1] = K[0] = 1;
        for (int i = 1; i <= n; i++)
        {
            a[i] = read();
            pre[i] = pre[i - 1] * a[i] % mod;
            K[i] = K[i - 1] * k % mod;
        }
        for (int i = n; i >= 1; i--)
            suf[i] = suf[i + 1] * a[i] % mod;
        ll ans = 0;
        ll und = inv(pre[n]);
        for (int i = 1; i <= n; i++)
            ans = (ans + (K[i] * (1ll * pre[i - 1] * suf[i + 1] % mod) % mod) * und) % mod;
        printf("%lld", ans);
        return 0;
    
    }
    

    P3807 【模板】卢卡斯定理

    套公式:(C(n,m)=C(n/p,m/p)*C(n\%p,m\%p))

    关于为什么不能线性求(因为数据很小)

    因为递推fac的时候,p小于n+m,这时候fac[p]到fac[n+m]都会变成0,之后带有这些fac的项也都会变成0;

    实际上C(n,m)=n!/m!/(n-m)!中fac中包含因子p的项可能会被消去,此时%p就不一定等于0了,但之前预处理的时候把这些项都标记成了0,这样答案就不对了。

    #include<bits/stdc++.h>
    using namespace std;
    #define ll long long
    #define fastio ios::sync_with_stdio(false),cin.tie(NULL),cout.tie(NULL)
    #define pii pair<int,int>
    const int inf = 1e9 + 7;
    const ll lnf = 1e18 + 7;
    const int maxn = 5e6 + 10;
    ll mod = 1e9 + 7;
    double eps = 1e-6;
    
    int gcd(int a, int b)
    {
        return b ? gcd(b, a % b) : a;
    }
    
    ll qpow(ll x, ll y)
    {
        x %= mod;
        ll res = 1;
        while (y)
        {
            if (y & 1)res = res * x % mod;
            x = x * x % mod;
            y >>= 1;
        }
        return res%mod;
    }
    
    ll inv(ll x)
    {
        return qpow(x, mod - 2) % mod;
    }
    
    ll a[maxn];
    ll fac[maxn];
    
    ll C(int n, int m)
    {
        if (n < m)return 0;
        if (m == 0)return 1;
        if (n < mod)
            return fac[n] * inv(fac[m]) * inv(fac[n - m]) % mod;
        return C(n / mod, m / mod) * C(n % mod, m % mod) % mod;
    }
    
    int main()
    {
        fastio;
        int t;
        cin >> t;
        fac[0] = 1;
    
        while (t--)
        {
            int n, m;
            cin >> n >> m >> mod;
            for (int i = 1; i < mod; i++)
                fac[i] = fac[i - 1] * i % mod;
            cout << C(n + m, n)%mod << endl;
        }
        return 0;
    
    }
    

    CF632D Longest Subsequence

    题意:给出n个数,要求选出尽可能多的数,满足它们的最小公倍数不大于m。允许数列里没数,此时这个数列的最小公倍数为1。

    (n,m<={10}^{6}, a_i <= {10}^{9})

    两个数的lcm必然大于其中任意一个数

    所以可以把(a_i > m)全部筛除;

    剩下的a_i可以用类似埃筛的方法把所有可以整除a_i的小于等于m的数x的(res[a[i]*j]+=cnt[a[i]])

    最后从小到大枚举lcm,找到res[i]最大的第一个数就是可以凑出的最大lcm

    结论:因为这个数是最小的一个可以被最多数整除的数,(lcm(a_1,a_2,...,a_n))可以被其中任意一个(a_i)整除

    #include<bits/stdc++.h>
    using namespace std;
    #define ll long long
    #define fastio ios::sync_with_stdio(false),cin.tie(NULL),cout.tie(NULL)
    const int inf = 1e9 + 7;
    const ll lnf = 1e18 + 7;
    const int maxn = 5e6 + 10;
    ll mod = 1e9 + 7;
    double eps = 1e-6;
    
    int gcd(int a, int b)
    {
        return b ? gcd(b, a % b) : a;
    }
    
    int cnt[maxn], res[maxn];
    
    int main()
    {
        fastio;
        int n, m;
        cin >> n >> m;
        set<int>s;
        vector<int>a(n + 1);
        for (int i = 1; i <= n; i++)
        {
            cin >> a[i];
            if (a[i] > m)continue;
            s.insert(a[i]);
            cnt[a[i]]++;
        }
        for (auto i : s)
        {
            for (int j = i; j <= m; j += i)
                res[j] += cnt[i];
        }
        int lcm = 1, ans = 0;
        for (int i = 1; i <= m; i++)
            if (res[i] > ans)
                ans = res[i], lcm = i;
        cout << lcm << " " << ans << endl;
        for (int i = 1; i <= n; i++)
        {
            if (lcm % a[i] == 0)
                cout << i << " ";
        }
        return 0;
    
    }
    
  • 相关阅读:
    centos7安装gitlab
    jenkins 部署k8s-jar包项目
    jenkins部署k8s项目-CICD
    pipeline
    jenkins打包
    jenkins 按角色设置管理权限
    1 jenkins的介绍和安装
    PyTables的下载和安装
    解决python报错:ImportError: No module named shutil_get_terminal_size 的方法
    nodejs安装失败
  • 原文地址:https://www.cnblogs.com/ruanbaiQAQ/p/14711214.html
Copyright © 2011-2022 走看看