zoukankan      html  css  js  c++  java
  • 【机器学习】支持向量机(SVM)

      感谢中国人民大学胡鹤老师,课程深入浅出,非常好

    一、关于SVM

    可以做线性分类、非线性分类、线性回归等,相比逻辑回归、线性回归、决策树等模型(非神经网络)功效最好

    传统线性分类:选出两堆数据的质心,并做中垂线(准确性低)——上图左

    SVM:拟合的不是一条线,而是两条平行线,且这两条平行线宽度尽量大,主要关注距离车道近的边缘数据点(支撑向量support vector),即large margin classification——上图右

    使用前,需要对数据集做一个scaling,以做出更好的决策边界(decision boundary)

    但需要容忍一些点跨越分割界限,提高泛化性,即softmax classification

    在sklearn中,有一个超参数c,控制模型复杂度,c越大,容忍度越小,c越小,容忍度越高。c添加一个新的正则量,可以控制SVM泛化能力,防止过拟合。(一般使用gradsearch)

    SVM特有损失函数Hinge Loss

    二、LinearSVC(liblinear库,不支持kernel函数,但是相对简单,复杂度O(m*n))

    同SVM特点吻合,仅考虑落在分类面附近和越过分类面到对方领域的向量,给于一个线性惩罚(l1),或者平方项(l2)

    import numpy as np
    from sklearn import datasets
    from sklearn.pipeline import Pipeline
    from sklearn.preprocessing import StandardScaler
    from sklearn.svm import LinearSVC
    
    iris = datasets.load_iris()
    X = iris["data"][:,(2,3)]
    y = (iris["target"]==2).astype(np.float64)
    svm_clf = Pipeline((
        ("scaler",StandardScaler()),
        ("Linear_svc",LinearSVC(C=1,loss="hinge")),
        ))
    svm_clf.fit(X,y)
    print(svm_clf.predit([[5.5,1.7]]))

    三、对于nonlinear数据的分类

      有两种方法,构造高维特征,构造相似度特征

    1. 使用高维空间特征(即kernel的思想),将数据平方、三次方。。映射到高维空间上

    from sklearn.preprocessing import PolynomialFeatures
    polynomial_svm_clf = Pipeline((
         ("poly_features", PolynomialFeatures(degree=3)),
         ("scaler", StandardScaler()),
         ("svm_clf", LinearSVC(C=10, loss="hinge"))
       ))
    polynomial_svm_clf.fit(X, y)

    这种kernel trick可以极大地简化模型,不需要显示的处理高维特征,可以计算出比较复杂的情况

    但模型复杂度越强,过拟合风险越大

    SVC(基于libsvm库,支持kernel函数,但是相对复杂,不能用太大规模数据,复杂度O(m^2 *n)-O(m^3 *n))

     可以直接使用SVC(coef0:高次与低次权重)

    from sklearn.svm import SVC
    poly_kernel_svm_clf = Pipeline((
          ("scaler", StandardScaler()),
          ("svm_clf", SVC(kernel="poly", degree=3, coef0=1, C=5))
        ))
    poly_kernel_svm_clf.fit(X, y)

    2. 添加相似度特征(similarity features)

    例如,下图分别创造x1,x2两点的高斯分布,再创建新的坐标系统,计算高斯距离(Gaussian RBF Kernel径向基函数)

    gamma(γ)控制高斯曲线形状胖瘦,数据点之间的距离发挥更强作用

    rbf_kernel_svm_clf = Pipeline((
          ("scaler", StandardScaler()),
          ("svm_clf", SVC(kernel="rbf", gamma=5, C=0.001))
       ))
    rbf_kernel_svm_clf.fit(X, y)

    如下是不同gamma和C的取值影响 

     

     SGDClassifier(支持海量数据,时间复杂度O(m*n))

    四、SVM Regression(SVM回归)

    尽量让所用instance都fit到车道上,车道宽度使用超参数控制,越大越宽

    使用LinearSVR

    from sklearn.svm import LinearSVR
    svm_reg = LinearSVR(epsilon=1.5)
    svm_reg.fit(X, y)

     使用SVR

    from sklearn.svm import SVR
    svm_poly_reg = SVR(kernel="poly", degree=2, C=100, epsilon=0.1)
    svm_poly_reg.fit(X, y)

     五、数学原理:

    w通过控制h倾斜的角度,控制车道的宽度,越小越宽,并且使得违反分类的数据点更少

    1. hard margin linear SVM

    优化目标:,并且保证

    2. soft margin linear SVM

    增加一个新的松弛变量(slack variable),起正则化作用

    优化目标:,并且保证

    放宽条件,即使有个别实例违反条件,也惩罚不大

    3. LinearSVM

    使用拉格朗日乘子法进行计算,α是松弛项后的结果

    计算结果:取平均值

    KernelizedSVM

    由于

     故可先在低位空间里做点积计算,再映射到高维空间中。

    下列公式表示,在高维空间计算可用kernel trick方式,直接在低维上面计算

    几个常见的kernal及其function

     

  • 相关阅读:
    在 docker 容器中捕获信号
    python入门二维码生成
    SSH 端口转发
    Python之模块与包
    滑块验证demo示例
    上下界网络流初探
    大整数模板
    计算几何模板
    关于差分约束系统的脑洞
    并查集,以及可拆分并查集
  • 原文地址:https://www.cnblogs.com/rucwxb/p/7753330.html
Copyright © 2011-2022 走看看