zoukankan      html  css  js  c++  java
  • poj 3694 Network 边双连通+LCA

    题目链接http://poj.org/problem?id=3694

    题意:n个点,m条边,给你一个连通图,然后有Q次操作,每次加入一条边(A,B),加入边后,问当前还有多少桥,输出桥的个数。

    解题思路:先将原连通图边双连通缩点成一颗树,Q次操作过程中对树进行LCA操作。具体看代码:

    看网上也有不缩点的方法。

    思路参考于:http://www.cnblogs.com/kuangbin/p/3184884.html


    #include "stdio.h"   //poj 3177 边双连通问题 + LCA(最近公共祖先)
    #include "string.h"
    #include "vector"
    #include "queue"
    using namespace std;
    
    #define N 100100
    #define M 400200
    
    struct node
    {
        int x,y;
        bool visit;
        int next;
    } edge[2*M];
    int idx,head[N];
    
    void Init()
    {
        idx = 0;
        memset(head,-1,sizeof(head));
    }
    
    void Add(int x,int y)
    {
        edge[idx].x = x;
        edge[idx].y = y;
        edge[idx].visit = false;
        edge[idx].next = head[x];
        head[x] = idx++;
    }
    
    int time;
    int low[N],dfn[N];
    inline int MIN(int a,int b)
    {
        return a<b?a:b;
    }
    
    int st[M],num;  //记录哪些点为桥
    int stackk[2*M],top;  //模拟栈(本题栈中存的是点,不是边)
    
    int n,m;
    int countt; //记录有多少个双连通分量
    int belong[N];
    
    void lian_tong(int x)
    {
        int t;
        countt++;
        while(1)
        {
            t = stackk[top];
            top--;
            belong[t] = countt;
            if(t==x) break;
        }
    }
    
    void DFS(int x)
    {
        int i,y;
        stackk[++top] = x;
        low[x] = dfn[x] = ++time;
        for(i=head[x]; i!=-1; i=edge[i].next)
        {
            y = edge[i].y;
            if(edge[i].visit) continue;
            edge[i].visit = edge[i^1].visit = true;
            if(!dfn[y])
            {
                DFS(y);
                low[x] = MIN(low[x],low[y]);
                if(low[y]>dfn[x])
                    st[num++] = i;  //记录桥(两边双连通分量必定由桥相连)
            }
            else
                low[x] = MIN(low[x],dfn[y]);
        }
        if(dfn[x]==low[x])
            lian_tong(x); //标记当前边双连通分量
    }
    
    int ans;
    bool mark[N];
    int deep[N];
    int father[N];
    vector<int> vec[N];  //存树
    
    void LCA_bfs(int root)
    {
        int i,x,y;
        memset(deep,-1,sizeof(deep));
        deep[root] = 0;
        mark[root] = false;
        father[root] = -1;
        queue<int> q;
        q.push(root);
        while(!q.empty())
        {
            x = q.front();
            q.pop();
            for(i=0; i<(int)vec[x].size(); ++i)
            {
                y = vec[x][i];
                if(deep[y]!=-1) continue;
                deep[y] = deep[x]+1;
                mark[y] = true;
                father[y] = x;
                q.push(y);
            }
        }
    }
    
    void swap(int &x,int &y)
    {
        int t = x;
        x = y;
        y = t;
    }
    
    void LCA(int x,int y)
    {
        if(deep[x] > deep[y]) swap(x,y);
        while(deep[x]<deep[y])
        {
            if(mark[y])
            {
                ans--;
                mark[y] = false;
            }
            y = father[y];
        }
        while(x!=y)
        {
            if(mark[x])
            {
                ans--;
                mark[x] = false;
            }
            if(mark[y])
            {
                ans--;
                mark[y] = false;
            }
            x = father[x];
            y = father[y];
        }
    }
    
    void Solve()
    {
        int i;
        int x,y;
        countt = 0;  //统计边双连通分量的个数
        num = 0;  //统计桥的条数
        top = 0; //栈
        time = 0;
        memset(dfn,0,sizeof(dfn));
        DFS(1);
        for(i=1; i<=countt; ++i) vec[i].clear();
        for(i=0; i<num; ++i)  //遍历桥
        {
            x = edge[st[i]].x;
            y = edge[st[i]].y;
            x = belong[x];
            y = belong[y];
            vec[x].push_back(y);
            vec[y].push_back(x);
        }
        LCA_bfs(1);
        ans = countt - 1;
        int Q;
        int u,v;
        scanf("%d",&Q);
        while(Q--)
        {
            scanf("%d %d",&u,&v);
            LCA(belong[u],belong[v]);
            printf("%d
    ",ans);
        }
        printf("
    ");
    }
    
    int main()
    {
        int i;
        int Case=0;
        int x,y;
        while(scanf("%d %d",&n,&m),n+m)
        {
            Init();
            Case++;
            for(i=0; i<m; ++i)
            {
                scanf("%d %d",&x,&y);
                Add(x,y);
                Add(y,x);
            }
            printf("Case %d:
    ",Case);
            Solve();
        }
        return 0;
    }
    





  • 相关阅读:
    【转】ON_COMMAND ON_MESSAGE ON_NOTIFY区别与联系
    Eureka
    application.yml-mysql8
    sprigcloud
    springboot
    maven
    排序算法之基数排序
    排序算法之桶排序
    排序算法之计数排序
    排序算法之堆排序
  • 原文地址:https://www.cnblogs.com/ruo-yu/p/4411970.html
Copyright © 2011-2022 走看看