zoukankan      html  css  js  c++  java
  • POJ 2831 Can We Build This One?

    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 1728   Accepted: 643
    Case Time Limit: 2000MS

    Description

    “Highways are built, then life is rich.” Now people of Big Town want to become rich, so they are planning to build highways to connect their villages.

    Big Town is really big and has many villages. Its people plan to build some highways between some pairs of villages so that every pair of villages is connected by the highways either directly or indirectly. After surveying the geographical surroundings, they find that there are some paths along with highways can be built. Every path is denoted by a triplet (abc) which means a highway can built between the a-th village and the b-th village with a cost of c. In order to save money, they will select only part of the paths to build highways along so that the total cost to build highways along the selected paths is minimal under the condition that every pair of villages is connected.

    It is possible that multiple such selections exist. People from every village want to have those highways of good interest to them built. But some highways can never appear in the selection since they are much too costly. So people ask whether a certain highway can be selected if they agree to cut the cost. Your task is to design a program to answer their queries.

    Input

    The first line of input contains three integers NM and Q (1 < N ≤ 1,000, N − 1 ≤ M ≤ 100,000, 0 < Q ≤ 100,000), where N is the number of villages, M is the number of paths, and Q is the number of queries. Each of the next M lines contains three integers ab, and c (1 ≤ ab ≤ Na ≠ b, 0 ≤ c ≤ 1,000,000). The triplet (abc) describes a path. Each of following Q lines contains two integer i and x (1 ≤ i ≤ M, 0 ≤ x) describing a query, “Can a highway be built along the i-th path if the cost of is reduced to x?” x is strictly lower than the original cost of building a highway along the i-th path. It is assumed that every pair of village will be connected either directly or indirectly if all possible highways are built. And there may be more than one highway that can be built between a pair of villages.

    Output

    Output one line for each query. Output either “Yes” or “No” as the answer to the the query.

    Sample Input

    3 4 3
    1 2 10
    1 3 6
    2 3 4
    1 3 7
    4 6
    1 7
    1 5

    Sample Output

    Yes
    No
    Yes

    Source

     
    次小生成树+不知道是不是的spfa
    如果降低后费用小于等于两点间的最大费用,则输出Yes.
    否则输出No.
    prim算法好写些,但我忘记怎么写了。。
    #include <algorithm>
    #include <cstring>
    #include <cstdio>
    #include <vector>
    #include <queue>
    #define M 100005 
    #define N 1005
    
    using namespace std;
    struct Edge
    {
        int x,y,z;
        bool operator <(Edge a)const
        {
            return z<a.z;
        }
    }edge[M],oedge[M];
    bool vis[N];
    int fa[N],n,m,q,dist[N][N];
    int find_(int x) {return x==fa[x]?x:fa[x]=find_(fa[x]);}
    struct node
    {
        int to,dis;
        node (int to=0,int dis=0) : to(to),dis(dis) {}
    };
    vector<node>vec[N]; 
    void update(int s)
    {
        memset(vis,0,sizeof(vis));
        dist[s][s]=0;
        vis[s]=1;
        queue<int>Q;
        Q.push(s);
        for(int now=Q.front();!Q.empty();Q.pop(),now=Q.front())
        {
            for(int i=0;i<vec[now].size();i++)
            {
                int v=vec[now][i].to,w=vec[now][i].dis;
                if(vis[v]) continue;
                dist[s][v]=max(dist[s][now],w);
                vis[v]=1;
                Q.push(v);
            }
        }
    }
    int main()
    {
        scanf("%d%d%d",&n,&m,&q);
        for(int a,b,c,i=1;i<=m;i++)
        {
            scanf("%d%d%d",&a,&b,&c);
            edge[i].x=a;
            edge[i].y=b;
            edge[i].z=c;
            oedge[i]=edge[i];
        }
        for(int i=1;i<=n;i++) fa[i]=i;
        sort(edge+1,edge+1+m);
        int num=0;
        for(int i=1;i<=m;i++)
        {
            int fx=find_(edge[i].x),fy=find_(edge[i].y); 
            if(fx!=fy)
            {
                fa[fy]=fx;
                num++;
                vec[edge[i].x].push_back(node(edge[i].y,edge[i].z));
                vec[edge[i].y].push_back(node(edge[i].x,edge[i].z));
                if(num==n-1) break;
            }
        }
        for(int i=1;i<=n;i++) update(i);
        for(int xx,yy;q--;)
        {
            scanf("%d%d",&xx,&yy);
            if(dist[oedge[xx].x][oedge[xx].y]>=yy) printf("Yes
    ");
            else printf("No
    ");
        }
        return 0;
    }
    我们都在命运之湖上荡舟划桨,波浪起伏着而我们无法逃脱孤航。但是假使我们迷失了方向,波浪将指引我们穿越另一天的曙光。
  • 相关阅读:
    页面高度自适应方法(PC、移动端都适用)
    Axure 文本框去掉边框 富文本 粘贴文字图标
    Axure 文本框去掉边框 富文本 粘贴文字图标
    mui switch 点击事件不冒泡
    使用vue-router+vuex进行导航守卫(转)
    Layui select下拉框改变之 change 监听事件(转)
    jQuery获取节点和子节点文本的方法
    动态规划(3)——算法导论(18)
    动态规划(2)——算法导论(17)
    Base64编码
  • 原文地址:https://www.cnblogs.com/ruojisun/p/7392193.html
Copyright © 2011-2022 走看看