zoukankan      html  css  js  c++  java
  • 使用SQL Server 2008提供的表分区向导

     表分区(Partition Table)是自从SQL Server 2005就开始提供的功能,解决的问题是大型表的存储和查询。

      我们之前大致的语法是这样的

    -- ========================= 
    -- 演示:陈希章 
    -- 如何创建分区函数 
    -- 如何创建分区架构 
    -- 如何创建分区表 
    --========================= 
    alter database adventureWorks add filegroup [fg1] 
    go 
    alter database adventureWorks add filegroup [fg2] 
    go 
    alter database adventureWorks add filegroup [fg3] 
    go 
    alter database adventureWorks 
    add file 
    (name='fg1', 
    filename='c:\fg1.ndf', 
    size=5mb) 
    to filegroup [fg1] 
    go 
    alter database adventureWorks 
    add file 
    (name='fg2', 
    filename='d:\fg2.ndf', 
    size=5mb) 
    to filegroup [fg2] 
    go 
    alter database adventureWorks 
    add file 
    (name='fg3', 
    filename='e:\fg3.ndf', 
    size=5mb) 
    to filegroup [fg3] 
    go 
    use adventureWorks 
    go 
    Create partition function emailPF(nvarchar(50)) as range right for values ('G','N')--创建分区函数 
    go 
    Create partition scheme emailPS as partition emailPF to (fg1,fg2,fg3)--创建分区方案 
    go 
    Create table customermail (custid int, email nvarchar(50)) on emailPS(email)--创建分区表 
    Go 

      为了简化操作,SQL Server 2008中为表分区提供了相关的操作

     

     

    最后生成的脚本是这样的

    USE [demo]
    GO
    BEGIN TRANSACTION
    CREATE PARTITION FUNCTION [ordersfunction](date) AS RANGE LEFT FOR VALUES (N'2008-01-01', N'2008-02-01', N'2008-03-01') 
    CREATE PARTITION SCHEME [ordersscheme] AS PARTITION [ordersfunction] TO ([PRIMARY], [PRIMARY], [PRIMARY], [PRIMARY]) 
    CREATE CLUSTERED INDEX [ClusteredIndex_on_ordersscheme_633765890752500000] ON [dbo].[Orders] 
    (
        [OrderDate]
    )WITH (SORT_IN_TEMPDB = OFF, IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF, ONLINE = OFF) ON [ordersscheme]([OrderDate]) 
    DROP INDEX [ClusteredIndex_on_ordersscheme_633765890752500000] ON [dbo].[Orders] WITH ( ONLINE = OFF ) 
    COMMIT TRANSACTION 
  • 相关阅读:
    Numpy学习1
    spark SQL学习(综合案例-日志分析)
    spark SQL学习(认识spark SQL)
    spark SQL学习(案例-统计每日销售)
    spark SQL学习(案例-统计每日uv)
    spark SQL学习(spark连接 mysql)
    spark SQL学习(spark连接hive)
    spark SQL学习(数据源之json)
    常用的Java工具类——十六种
    Idea格式化快捷键无效,没反应
  • 原文地址:https://www.cnblogs.com/ryb/p/2148969.html
Copyright © 2011-2022 走看看