利用Logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类。
训练分类器时的做法就是寻找最佳拟合参数,使用的时最优化算法。
优点:计算代价不高,利于理解和实现。
缺点:容易欠拟合,分类精度可能不高。
适用数据类型:数值型和标称型数据。
最优化算法:1基本的梯度上升法 2改进的梯度上升法
海维塞德阶跃函数=单位阶跃函数(该函数在跳跃点上从0瞬间跳跃到1),这个顺时跳跃过程很难处理。幸好,另一个函数也有类似的性质,而且数学上更容易处理,这就是Sigmoid函数。具体的计算公式如下:
σ(z) =1/(1+e-z)
当z为0时,Sigmoid函数值为0.5。随着x的增大,对应的Sigmoid函数值将逼近于1;而随着x的减小,Sigmoid值将逼近于0。如果横坐标刻度足够大,Sigmoid函数看起来很像一个阶跃函数。因此为了实现Logistic回归分类器,我们可以在每个特征上都乘以一个回归系数,然后把所有的结值相加,将这个总和代入Sigmoid函数中,进而得到一个范围在0~1之间的数值。
确定了分类器的函数形式之后,现在的问题变成了:最佳回归系数是多少?如何确定他们的大小?
基于最优化方法的最佳回归系数确定
sigmoid函数的输入记为z,由下面公式得出:z=w0x0+w1x1+w2x2+...+wnxn,如果采用向量的写法,上述公式可以写成Z=wTx。其中向量x是分类器的输入数据,向量w也就是我们要找到的最佳参数。
下面将要介绍寻找最优参数的梯度上升法和随机梯度上升法
1梯度上升法-要找到某函数的最大值,最好的方法是沿着该函数的梯度方向探寻。
用向量来表示的话,梯度算法的迭代公式如下:
w:=w+αΔwf(w) Δwf(w):移动方向;α:步长。
该公式将一直被执行,直到达到某个条件为止,比如迭代次数达到某个指定值或者算法达到某个允许的误差范围。
梯度上升算法用来求函数的最大值,而梯度下降算法用来求函数的最小值。
#Logistic回归梯度上升优化算法(代码)如下: #!/usr/bin/env python from numpy import * def loadDataSet(): dataMat=[];labelMat=[] fr = open('testSet.txt') for line in fr.readlines(): lineArr=line.strip().split() dataMat.append([1.0,float(lineArr[0]),float(lineArr[1])]) #x0,x1,x2组成的三维数据集 labelMat.append(int(lineArr[2])) #类别标签 return dataMat,labelMat def sigmoid(inX): return 1.0/(1+exp(-inX)) def gradAscent(dataMatIn,classLabels): dataMatrix=mat(dataMatIn) labelMat=mat(classLabels).transpose() #转换为NumPy矩阵数据类型 m,n=shape(dataMatrix) alpha=0.001 maxCycles=500 #循环500次 weights=ones((n,1)) for k in range(maxCycles): h=sigmoid(dataMatrix*weights) error=(labelMat-h) weights=weights+alpha*dataMatrix.transpose()*error #更新参数 return weights dataArr,labelMat=loadDataSet() print gradAscent(dataArr,labelMat)
#画出分隔线,从而使得优化的过程便于理解,在上述代码后添加如下代码:
def plotBestFit(wei): import matplotlib.pyplot as plt weights=wei.getA() dataMat,labelMat=loadDataSet() dataArr=array(dataMat) n=shape(dataArr)[0] xcord1=[];ycord1=[] xcord2=[];ycord2=[] for i in range(n): if int(labelMat[i])==1: xcord1.append(dataArr[i,1]);ycord1.append(dataArr[i,2]) else: xcord2.append(dataArr[i,1]);ycord2.append(dataArr[i,2]) fig = plt.figure() ax=fig.add_subplot(111) ax.scatter(xcord1,ycord1,s=30,c='red',marker='s') ax.scatter(xcord2,ycord2,s=30,c='green') x=arange(-3.0,3.0,0.1) y=(-weights[0]-weights[1]*x)/weights[2] ax.plot(x,y) plt.xlabel('x1');plt.ylabel('x2') plt.show() dataArr,labelMat=loadDataSet() weights=gradAscent(dataArr,labelMat) plotBestFit(weights.getA())
简单的测验数据(testSet.txt):
-1 -2 0
-2 -3 0
-3 -4 0
-4 -5 0
-5 -6 0
6 7 1
-3 -2 0
7 5 1
6 3 1
5 4 1
7 3 1