zoukankan      html  css  js  c++  java
  • python爬虫——爬取网页数据和解析数据

    1.网络爬虫的基本概念

    网络爬虫(又称网络蜘蛛,机器人),就是模拟客户端发送网络请求,接收请求响应,一种按照一定的规则,自动地抓取互联网信息的程序。
    只要浏览器能够做的事情,原则上,爬虫都能够做到。

    2.网络爬虫的功能

      图2

    网络爬虫可以代替手工做很多事情,比如可以用于做搜索引擎,也可以爬取网站上面的图片,比如有些朋友将某些网站上的图片全部爬取下来,集中进行浏览,同时,网络爬虫也可以用于金融投资领域,比如可以自动爬取一些金融信息,并进行投资分析等。

    有时,我们比较喜欢的新闻网站可能有几个,每次都要分别打开这些新闻网站进行浏览,比较麻烦。此时可以利用网络爬虫,将这多个新闻网站中的新闻信息爬取下来,集中进行阅读。

    有时,我们在浏览网页上的信息的时候,会发现有很多广告。此时同样可以利用爬虫将对应网页上的信息爬取过来,这样就可以自动的过滤掉这些广告,方便对信息的阅读与使用。

    有时,我们需要进行营销,那么如何找到目标客户以及目标客户的联系方式是一个关键问题。我们可以手动地在互联网中寻找,但是这样的效率会很低。此时,我们利用爬虫,可以设置对应的规则,自动地从互联网中采集目标用户的联系方式等数据,供我们进行营销使用。

    有时,我们想对某个网站的用户信息进行分析,比如分析该网站的用户活跃度、发言数、热门文章等信息,如果我们不是网站管理员,手工统计将是一个非常庞大的工程。此时,可以利用爬虫轻松将这些数据采集到,以便进行进一步分析,而这一切爬取的操作,都是自动进行的,我们只需要编写好对应的爬虫,并设计好对应的规则即可。

    除此之外,爬虫还可以实现很多强大的功能。总之,爬虫的出现,可以在一定程度上代替手工访问网页,从而,原先我们需要人工去访问互联网信息的操作,现在都可以用爬虫自动化实现,这样可以更高效率地利用好互联网中的有效信息。
    3.安装第三方库

    在进行爬取数据和解析数据前,需要在Python运行环境中下载安装第三方库requests。

    在Windows系统中,打开cmd(命令提示符)界面,在该界面输入pip install requests,按回车键进行安装。(注意连接网络)如图3

     图3

    安装完成,如图4

     

     图4

    4.爬取淘宝首页

    复制代码
     1 # 请求库
     2 import requests
     3 # 用于解决爬取的数据格式化
     4 import io
     5 import sys
     6 sys.stdout = io.TextIOWrapper(sys.stdout.buffer,encoding='utf-8')
     7 # 爬取的网页链接
     8 r= requests.get("https://www.taobao.com/")
     9 # 类型
    10 # print(type(r))
    11 print(r.status_code)
    12 # 中文显示
    13 # r.encoding='utf-8'
    14 r.encoding=None
    15 print(r.encoding)
    16 print(r.text)
    17 result = r.text
    复制代码

    运行结果,如图5

     图5

    5.爬取和解析淘宝网首页

    复制代码
     1 # 请求库
     2 import requests
     3 # 解析库
     4 from bs4 import BeautifulSoup
     5 # 用于解决爬取的数据格式化
     6 import io
     7 import sys
     8 sys.stdout = io.TextIOWrapper(sys.stdout.buffer,encoding='utf-8')
     9 # 爬取的网页链接
    10 r= requests.get("https://www.taobao.com/")
    11 # 类型
    12 # print(type(r))
    13 print(r.status_code)
    14 # 中文显示
    15 # r.encoding='utf-8'
    16 r.encoding=None
    17 print(r.encoding)
    18 print(r.text)
    19 result = r.text
    20 # 再次封装,获取具体标签内的内容
    21 bs = BeautifulSoup(result,'html.parser')
    22 # 具体标签
    23 print("解析后的数据")
    24 print(bs.span)
    25 a={}
    26 # 获取已爬取内容中的script标签内容
    27 data=bs.find_all('script')
    28 # 获取已爬取内容中的td标签内容
    29 data1=bs.find_all('td')
    30 # 循环打印输出
    31 for i in data:
    32     a=i.text
    33     print(i.text,end='')
    34     for j in data1:
    35         print(j.text)
    复制代码

    运行结果,如图6

    图6

    7.小结

    在对网页代码进行爬取操作时,不能频繁操作,更不要将其设置成死循环模式

  • 相关阅读:
    Android 生命周期
    adb 的相关操作及遇到的问题
    各种内部类
    Android 的系统架构
    Hibernate的各种关联关系
    Eclipse常用的快捷键
    Android 开发前的基本的配置及第一个Android 程序
    spring MVC Validation(表单验证)
    创建 spring MVC项目的基本步骤
    Android_demo之生成二维码
  • 原文地址:https://www.cnblogs.com/ryyy/p/14275584.html
Copyright © 2011-2022 走看看