zoukankan      html  css  js  c++  java
  • POJ 3667 Hotel(线段树 区间合并)

    Hotel

    转载自:http://www.cnblogs.com/scau20110726/archive/2013/05/07/3065418.html

    【题目链接】Hotel

    【题目类型】线段树 区间合并

    &题意:

    有一个线段,从1到n,下面m个操作,操作分两个类型,以1开头的是查询操作,以2开头的是更新操作
    1 w 表示在总区间内查询一个长度为w的可用区间,并且要最靠左,能找到的话返回这个区间的左端点并占用了这个区间,找不到返回0
    好像n=10 , 1 3 查到的最左的长度为3的可用区间就是[1,3],返回1,并且该区间被占用了
    2 a len , 表示从单位a开始,清除一段长度为len的区间(将其变为可用,不被占用),不需要输出
    因此看sample的话就可以理解了

    &题解:

    记录一下自己的感悟:

    用线段树,首先要定义好线段树的节点信息,一般看到一个问题,很难很快能确定线段树要记录的信息
    做线段树不能为了做题而做,首先线段树是一种辅助结构,它是为问题而生的,因而必须具体问题具体分析
    回忆一下RMQ问题,其实解决RMQ有很多方法,根本不需要用到线段树,用线段树解决RMQ,其实是利用线段树的性质来辅助解决这个问题
    回忆一下求矩形面积并或周长并的问题,一般使用的是扫描线法,其实扫描线法和线段树一点关系都没有,扫描线法应该归为计算几何的算法,
    使用线段树只是为了辅助实现扫描线法

    因而回到这题,要解,必须分析问题本质,才去思考怎么用线段树来辅助,另外为什么能用线段树辅助是可行的,这个问题似乎更有价值

    1 查询操作,找一段长度为W的没被覆盖的最左的区间
    2 更新操作,将某段连续的区域清空

    更新操作相对容易解决,关键是怎么实现查询操作
    既然是要找一段长度至少为W的区间,要做到这点,其实不难,我们可以在每个线段树的节点里增加一个域tlen,表示该区间可用的区间的最大长度,
    至于这个tlen区间的具体位置在哪里不知道,只是知道该区间内存在这么一段可用的区间,并且注意,这个tlen表示的是最大长度,该节点可能有多段可用的区间,但是最长的长度是tlen
    记录了这个信息,至少能解决一个问题,就是能不能找到一个合适的区间。如果查询的区间长度W > 总区间的tlen,那么查询一定是失败的(总区间中可以的最大区间都不能满足那就肯定失败)
    但这远远不够,其一查询是要返回区间的具体位置的,这里无法返回位置,另外是要查询最左区间,最左的且满足>=W的区间可能不是这个tlen区间

    那么我们进一步思考这个问题
    首先我们先增加两个域,llen,rlen
    llen表示一个区间从最左端开始可用的且连续的最大长度
    例如区间[1,5],覆盖情况为[0,0,0,1,1],llen = 3,从最左端有3格可以利用
    区间[1,5],覆盖情况为[1,0,0,0,0],llen = 0,因为从最左端开始找不到1格可用的区间
    rlen表示一个区间从最右端开始可用的且连续的最大长度
    例如区间[1,5],覆盖情况为[1,0,1,0,0],rlen = 2,从最右端有2格可以利用
    区间[1,5],覆盖情况为[0,0,0,0,1],rlen = 0,因为从最右端开始找不到1格可用的区间
    对于一个区间,我们知道它左半区间的tlen,和右半区间的tlen,如果左半区间的tlen >= W ,那么我们一定能在左边找到(满足最左),所以可以深入到左半区间去确定该区间的具体位置
    如果左端的不满足,那么我们要先考虑横跨两边的区间(因为要满足最左),因而记录的llen,rlen可以派上用场,一段横跨的区间,
    那么是 左边区间rrlen + 右边区间llen ,如果满足的话,就是该区间了,它的位置也是可以确定的
    如果横跨的区间不满足,那么就在右半区间找,如果右半区间的tlen >= W , 那么可以在右半区间找到,所以深入到右半区间去确定它的具体位置,否则的话,整个查询就失败了

    可见查询是建立在tlen,llen,rlen这个信息之上的,而每次查询后其实伴随着修改,而且还有专门的修改操作,这些修改操作都会改变tlen,llen,rlen的值,所以在更新的时候是时刻维护这些信息

    关于这3个信息的维护

    当前区间的tlen = max{ 左半区间tlen , 右半区间tlen , 左半区间rlen+右半区间llen} (这个不难理解吧,取左右较大的那个,或者横跨中间的那个)

    如果左半区间全部可以用: 当前区间llen = 左半区间llen(tlen) + 右半区间llen
    左半区间部分能用: 当前区间llen = 左半区间llen

    如果右半区间全部能用: 当前区间rlen = 右半区间rlen(tlen) + 左半区间rlen
    右半区间部分能用: 当前区间rlen = 右半区间rlen

    这样就全部维护好了

    &代码:

    #include <cstdio>
    #include <cstring>
    #define lch(i) ((i)<<1)
    #define rch(i) ((i)<<1|1)
    #define max(a,b) ((a)>(b)?(a):(b))
    #define min(a,b) ((a)<(b)?(a):(b))
    #define N  50010
    #define INF  0x3f3f3f3f
    
    struct node
    {
        int l,r;
        int mark;
        int tlen,llen,rlen;
        int mid(){
            return (l+r)>>1;
        }
        int cal_len(){
            return r-l+1;
        }
        void updata_len(){
            tlen = llen = rlen = ( mark ? 0 : cal_len() );
        }
    }t[4*N];
    
    void build(int l ,int r ,int rt)
    {
        t[rt].l = l; t[rt].r = r; 
        t[rt].tlen = t[rt].llen = t[rt].rlen = t[rt].cal_len();
        t[rt].mark = 0;
        if(l == r) return ;
        int mid = t[rt].mid();
        build(l , mid , lch(rt));
        build(mid+1 , r , rch(rt));
        return ;
    }
    
    int query(int w ,int rt)
    {
        if(t[rt].l == t[rt].r && w == 1) //叶子特判
            return t[rt].l;
        if(t[rt].mark != -1) //延迟标记,父亲信息传递给儿子
        {
            t[lch(rt)].mark = t[rch(rt)].mark = t[rt].mark;
            t[rt].mark = -1;
            t[lch(rt)].updata_len(); //传递信息后更新孩子的区间覆盖情况
            t[rch(rt)].updata_len(); //传递信息后更新孩子的区间覆盖情况
        }
        if(t[lch(rt)].tlen >= w) //左孩子的可用区间可以满足,那么一定在左孩子区间内
            return query(w , lch(rt));
        else if(t[lch(rt)].rlen + t[rch(rt)].llen >= w) //横跨左右孩子且连续的区间可以满足,那么可以直接返回下标
            return ( t[lch(rt)].r - t[lch(rt)].rlen + 1 );
        else if(t[rch(rt)].tlen >= w) //右孩子的可用区间可以满足,那么去右孩子处找
            return query(w , rch(rt));
        else //找不到可用的区间
            return 0;
    }
    
    void updata(int l ,int r ,int val ,int rt)
    {
        if(t[rt].l == l && t[rt].r == r)
        {
            t[rt].mark = val;
            t[rt].updata_len();
            return ;
        }
        if(t[rt].mark != -1) //延迟标记,父亲信息传递给儿子
        {
            t[lch(rt)].mark = t[rch(rt)].mark = t[rt].mark;
            t[rt].mark = -1;
            t[lch(rt)].updata_len(); //传递信息后更新孩子的区间覆盖情况
            t[rch(rt)].updata_len(); //传递信息后更新孩子的区间覆盖情况
        }
        int mid = t[rt].mid();
        if(l > mid) //修改的区间在右孩子
            updata(l , r , val , rch(rt));
        else if(r <= mid) //修改的区间在左孩子
            updata(l , r , val , lch(rt));
        else
        {
            updata(l , mid , val , lch(rt));
            updata(mid+1 , r , val , rch(rt));
        }
        int tmp = max(t[lch(rt)].tlen , t[rch(rt)].tlen);
        t[rt].tlen = max(tmp , t[lch(rt)].rlen + t[rch(rt)].llen);
        t[rt].llen = t[lch(rt)].llen;
        t[rt].rlen = t[rch(rt)].rlen;
        if(t[lch(rt)].tlen == t[lch(rt)].cal_len() )
            t[rt].llen += t[rch(rt)].llen;
        if(t[rch(rt)].tlen == t[rch(rt)].cal_len() )
            t[rt].rlen += t[lch(rt)].rlen;
        return ;
    }
    
    int main()
    {
        int n,m;
        scanf("%d%d",&n,&m);
        build(1,n,1);
        while(m--)
        {
            int choose;
            scanf("%d",&choose);
            if(choose == 1) //查询操作
            {
                int w;
                scanf("%d",&w);
                int index = query(w,1);
                printf("%d
    ",index);
                if(index)
                    updata(index , index+w-1 , 1 , 1);
            }
            else
            {
                int l,len;
                scanf("%d%d",&l,&len);
                updata(l , l+len-1 , 0 , 1);
            }
        }
        return 0;
    }
    
  • 相关阅读:
    AsyncTask异步加载和HttpURLConnection网络请求数据
    The Vertu of the Dyamaund钻石
    英文finaunce金融
    Middle English finaunce金融
    金融finaunce财经
    英语fraunce法兰西
    France Alternative forms Fraunce
    python关于try except的使用方法
    java实现在线预览--poi实现word、excel、ppt转html
    static 关键字有什么作用
  • 原文地址:https://www.cnblogs.com/s1124yy/p/6242603.html
Copyright © 2011-2022 走看看