zoukankan      html  css  js  c++  java
  • HDU 4614 Vases and Flowers

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4614

    ----------------------------------------------------------------------------------

    较为麻烦的一道线段树题目 为了更方便处理可以把

    查询左端点 查询右端点 区间查询 这三个查询分开写

    最后复杂度是 $O(mlog(n))$的 $($下面的代码就是用的这个思路$)$

      1 #include <cstdio>
      2 #include <cstring>
      3 #include <cmath>
      4 #include <algorithm>
      5 using namespace std;
      6 const int N = 50010;
      7 int sum[N << 2], flag[N << 2];
      8 int t, n, m;
      9 void pushdown(int x, int tl, int tr)
     10 {
     11     if(!flag[x])
     12         return;
     13     flag[x << 1] = flag[x << 1 | 1] = flag[x];
     14     if(flag[x] & 1)
     15         sum[x << 1] = sum[x << 1 | 1] = 0;
     16     else
     17     {
     18         int mid = (tl + tr) >> 1;
     19         sum[x << 1] = mid - tl + 1;
     20         sum[x << 1 | 1] = tr - mid;
     21     }
     22     flag[x] = 0;
     23 }
     24 void update(int x, int L, int R, int tl, int tr, int y)
     25 {
     26     if(L <= tl && tr <= R)
     27     {
     28         flag[x] = y;
     29         if(y & 1)
     30             sum[x] = 0;
     31         else
     32             sum[x] = tr - tl + 1;
     33         return;
     34     }
     35     int mid = (tl + tr) >> 1;
     36     pushdown(x, tl, tr);
     37     if(L <= mid)
     38         update(x << 1, L, R, tl, mid, y);
     39     if(mid < R)
     40         update(x << 1 | 1, L, R, mid + 1, tr, y);
     41     sum[x] = sum[x << 1] + sum[x << 1 | 1];
     42 }
     43 int queryl(int x, int L, int tl, int tr)
     44 {
     45     if(!sum[x])
     46             return -1;
     47     if(tl == tr)
     48         return tl;
     49     int mid = (tl + tr) >> 1;
     50     pushdown(x, tl, tr);
     51     int re = -1;
     52     if(L <= mid && sum[x << 1])
     53         re = queryl(x << 1, L, tl, mid);
     54     if(re != -1)
     55         return re;
     56         return queryl(x << 1 | 1, L, mid + 1, tr);
     57 }
     58 int queryr(int x, int L, int tl, int tr, int &num)
     59 {
     60     if(tl == tr)
     61     {
     62         num -= sum[x];
     63         return tl;
     64     }
     65     int mid = (tl + tr) >> 1;
     66     pushdown(x, tl, tr);
     67     if(L <= tl)
     68     {
     69         if(sum[x << 1] >= num || !sum[x << 1 | 1])
     70             return queryr(x << 1, L, tl, mid, num);
     71         num -= sum[x << 1];
     72         return queryr(x << 1 | 1, L, mid + 1, tr, num);
     73     }
     74     if(L <= mid)
     75     {
     76         int re = queryr(x << 1, L, tl, mid, num);
     77         if(!num || !sum[x << 1 | 1])
     78             return re;
     79     }
     80     return queryr(x << 1 | 1, L, mid + 1, tr, num);
     81 }
     82 int query(int x, int L, int R, int tl, int tr)
     83 {
     84     if(L <= tl && tr <= R)
     85         return tr - tl + 1 - sum[x];
     86     int mid = (tl + tr) >> 1, re = 0;
     87     pushdown(x, tl, tr);
     88     if(L <= mid)
     89         re += query(x << 1, L, R, tl, mid);
     90     if(mid < R)
     91         re += query(x << 1 | 1, L, R, mid + 1, tr);
     92     return re;
     93 }
     94 int main()
     95 {
     96     scanf("%d", &t);
     97     while(t--)
     98     {
     99         scanf("%d%d", &n, &m);
    100         memset(sum, 0, sizeof sum);
    101         memset(flag, 0, sizeof flag);
    102         update(1, 0, n - 1, 0, n - 1, 2);
    103         int x, y, z;
    104         while(m--)
    105         {
    106             scanf("%d%d%d", &x, &y, &z);
    107             if(x == 1)
    108             {
    109                 int L = queryl(1, y, 0, n - 1);
    110                 if(L == -1)
    111                 {
    112                     puts("Can not put any one.");
    113                     continue;
    114                 }    
    115                 int R = queryr(1, L, 0, n - 1, z);
    116                 printf("%d %d
    ", L, R);
    117                 update(1, L, R, 0, n - 1, 1);
    118             }
    119             else
    120             {
    121                 printf("%d
    ", query(1, y, z, 0, n - 1));
    122                 update(1, y, z, 0, n - 1, 2);
    123             }
    124         }
    125         puts("");
    126     }
    127     return 0;
    128 }

    ----------------------------------------------------------------------------------

    不过如果不想写这么多判断的话也可以多写个二分 这样就只要区间查询

    然而复杂度就会变成$O(mlog^2(n))$

  • 相关阅读:
    线段树
    哈希,hash
    单调栈
    树的重心
    背包问题
    最小生成树
    二分图匹配
    题解 P6355 [COCI2007-2008#3] DEJAVU
    题解 P6745 『MdOI R3』Number
    题解 P2080 增进感情
  • 原文地址:https://www.cnblogs.com/sagitta/p/5182351.html
Copyright © 2011-2022 走看看