http://poj.org/problem?id=1845
题目
Time Limit: 1000MS | Memory Limit: 30000K |
Description
Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901).
Input
The only line contains the two natural numbers A and B, (0 <= A,B <= 50000000)separated by blanks.
Output
The only line of the output will contain S modulo 9901.
Sample Input
2 3
Sample Output
15
Hint
2^3 = 8.
The natural divisors of 8 are: 1,2,4,8. Their sum is 15.
15 modulo 9901 is 15 (that should be output).
The natural divisors of 8 are: 1,2,4,8. Their sum is 15.
15 modulo 9901 is 15 (that should be output).
题解
筛素数后试除不行,因为空间限制
直接试除
得到了$1sim sqrt{A}$的素因子,可以肯定剩下的那个一定是素数,就像之前的Safe Upperbound一样
占坑= =
AC代码
#include<iostream> #include<cstring> #include<cstdio> #include<cmath> #include<algorithm> #include<set> #include<cassert> #define REP(r,x,y) for(register int r=(x); r<(y); r++) #define REPE(r,x,y) for(register int r=(x); r<=(y); r++) #ifdef sahdsg #define DBG(...) printf(__VA_ARGS__) #else #define DBG(...) (void)0 #endif using namespace std; typedef long long LL; typedef pair<LL, LL> pll; typedef pair<int, int> pii; #define MO 9901 #define MAXN 50000007 inline int qpow(int a, int b) { a%=MO; int ans=1; for(;b;b>>=1) { if(b&1) ans=(LL)ans*a%MO; a=(LL)a*a%MO; } return ans; } int sum(int a, int b) { if(a==0) return 0; if(b==0) return 1; if(b&1) { return (LL)sum(a,b/2)*(1+qpow(a,b/2+1))%MO; } else { return ((LL)sum(a,b/2-1)*(1+qpow(a,b/2))%MO+qpow(a,b))%MO; } } int a,b; int main() { scanf("%d%d", &a, &b); if(!a) {puts("0"); return 0;} LL ans=1; for(int i=2;i*i<=a;i++) { int cnt=0; if(!(a%i)) { a/=i, cnt++; while(!(a%i)) { a/=i,cnt++; } (ans*=sum(i,cnt*b))%=MO; } } if(a!=1) (ans*=sum(a,b))%=MO; printf("%lld ", ans); return 0; }