zoukankan      html  css  js  c++  java
  • Sumdiv POJ 1845

    http://poj.org/problem?id=1845

    题目

    Time Limit: 1000MS   Memory Limit: 30000K

    Description

    Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901).

    Input

    The only line contains the two natural numbers A and B, (0 <= A,B <= 50000000)separated by blanks.

    Output

    The only line of the output will contain S modulo 9901.

    Sample Input

    2 3

    Sample Output

    15

    Hint

    2^3 = 8.
    The natural divisors of 8 are: 1,2,4,8. Their sum is 15.
    15 modulo 9901 is 15 (that should be output).

    题解

    筛素数后试除不行,因为空间限制

    直接试除

    得到了$1sim sqrt{A}$的素因子,可以肯定剩下的那个一定是素数,就像之前的Safe Upperbound一样

    占坑= =

    AC代码

    #include<iostream>
    #include<cstring>
    #include<cstdio>
    #include<cmath>
    #include<algorithm>
    #include<set>
    #include<cassert>
    
    #define REP(r,x,y) for(register int r=(x); r<(y); r++)
    #define REPE(r,x,y) for(register int r=(x); r<=(y); r++)
    #ifdef sahdsg
    #define DBG(...) printf(__VA_ARGS__)
    #else
    #define DBG(...) (void)0
    #endif
    
    using namespace std;
    typedef long long LL;
    typedef pair<LL, LL> pll;
    typedef pair<int, int> pii;
    #define MO 9901
    #define MAXN 50000007
    inline int qpow(int a, int b) {
    	a%=MO;
    	int ans=1;
    	for(;b;b>>=1) {
    		if(b&1) ans=(LL)ans*a%MO;
    		a=(LL)a*a%MO;
    	}
    	return ans;
    }
    int sum(int a, int b) {
    	if(a==0) return 0; if(b==0) return 1;
    	if(b&1)  {
    		return (LL)sum(a,b/2)*(1+qpow(a,b/2+1))%MO;
    	} else {
    		return ((LL)sum(a,b/2-1)*(1+qpow(a,b/2))%MO+qpow(a,b))%MO;
    	}
    }
    int a,b;
    int main() {
    	scanf("%d%d", &a, &b);
    	if(!a) {puts("0"); return 0;}
    	LL ans=1;
    	for(int i=2;i*i<=a;i++) {
    		int cnt=0;
    		if(!(a%i)) {
    			a/=i, cnt++;
    			while(!(a%i)) {
    				a/=i,cnt++;
    			}
    			(ans*=sum(i,cnt*b))%=MO;
    		}
    	}
    	if(a!=1) (ans*=sum(a,b))%=MO;
    	printf("%lld
    ", ans);
    	return 0;
    }
    
  • 相关阅读:
    javascript零散要点收集
    javascript闭包,arguments和prototype
    javascript面向对象规则汇总以及json
    递归转非递归的编程思想
    汇编要点汇总
    队列相关算法
    深度优先遍历算法
    C++面向对象要点
    堆排序
    快速排序算法
  • 原文地址:https://www.cnblogs.com/sahdsg/p/10645948.html
Copyright © 2011-2022 走看看