转载自:https://elasticstack.blog.csdn.net/article/details/114383426
在今天的文章中,我们将详述如何使用 Logstash 来解析 JSON 文件的日志,并把它导入到 Elasticsearch 中。在之前的文章 “Logstash:Data转换,分析,提取,丰富及核心操作” 也有提到过,但是没有具体的例子。总体说来解析 JSON 文件的日志有两种方法:
在 file input 里使用 JSON codec
在 file input 里不使用 JSON codec,但是在 filter 的部分使用 JSON filter
我们把 JSON 格式的数据解析并导入到 Elasticsearch 的流程如下:
准备数据
我们准备了如下的数据:
sample.json
{"id": 4,"timestamp":"2019-06-10T18:01:32Z","paymentType":"Visa","name":"Cary Boyes","gender":"Male","ip_address":"223.113.73.232","purpose":"Grocery","country":"Pakistan","pastEvents":[{"eventId":7,"transactionId":"63941-950"},{"eventId":8,"transactionId":"55926-0011"}],"age":46}
{"id": 5,"timestamp":"2020-02-18T12:27:35Z","paymentType":"Visa","name":"Betteanne Diament","gender":"Female","ip_address":"159.148.102.98","purpose":"Computers","country":"Brazil","pastEvents":[{"eventId":9,"transactionId":"76436-101"},{"eventId":10,"transactionId":"55154-3330"}],"age":41}
构建 Logstash 配置文件
使用 json codec
input {
file {
path => [ "/Users/liuxg/data/logstash_json/sample.json" ]
start_position => "beginning"
sincedb_path => "/dev/null"
codec => "json"
}
}
output {
stdout {
codec => rubydebug
}
}
我们运行 Logstash:
sudo ./bin/logstash -f logstash_json.conf
上面的命令输出的结果为:
从上面的结果中,我们可以看出来文档被正确地解析。
使用 JSON filter
我们可以在 file input 中不使用任何的 code,但是我们可以可以使用 JSON filter 来完成解析的工作:
logstash_json_fileter.conf
input {
file {
path => [ "/Users/liuxg/data/logstash_json/sample.json" ]
start_position => "beginning"
sincedb_path => "/dev/null"
}
}
filter {
json {
source => "message"
}
}
output {
stdout {
codec => rubydebug
}
}
在上面,我们添加了 filter 这个部分。我们使用了 json 这个过滤器来完成对 JSON 格式的解析。重新运行我们的 Logstash。我们可以看到如下的输出:
在上面,我们可以看到一个叫做 message 的字段。这个字段显然它会占存储空间。我们可以把它删除掉。同时,我们也可以去掉那些不需要的元字段以节省空间。
logstash_json_fileter.conf
input {
file {
path => [ "/Users/liuxg/data/logstash_json/sample.json" ]
start_position => "beginning"
sincedb_path => "/dev/null"
}
}
filter {
json {
source => "message"
}
if [paymentType] == "Mastercard" {
drop{}
}
mutate {
remove_field => ["message", "path", "host", "@version"]
}
}
output {
stdout {
codec => rubydebug
}
}
在上面,我们检查 paymentType 是否为 Mastercard,如果是的话,我们把整个事件丢弃。同时我们删除不需要的字段,比如 message, path 等。重新运行 Logstash。我们可以看到如下的输出:
显然这次的输出比刚才的要干净很多。你可能已经注意到 @timestamp 的值和 timestamp 的值不太一样。在 Kibana 中,我们经常会使用 @timestamp 作为事件的时间标签。我们可以做如下的处理:
logstash_json_fileter.conf
input {
file {
path => [ "/Users/liuxg/data/logstash_json/sample.json" ]
start_position => "beginning"
sincedb_path => "/dev/null"
}
}
filter {
json {
source => "message"
}
if [paymentType] == "Mastercard" {
drop{}
}
date {
match => [ "timestamp", "ISO8601" ]
locale => en
}
mutate {
remove_field => ["message", "path", "host", "@version", "timestamp"]
}
}
output {
stdout {
codec => rubydebug
}
}
在上面,我们添加了 date 过滤器来解析时间。同时我们也删除 timestamp 这个字段。我们得到的结果是:
从上面我们可以看出来 @timestamp 的时间现在是时间的 timestamp 字段的时间。
在上面,我们看到 postEvent 是一个数组。如果我们想把这个数组拆分,并把其中的每一个事件作为一个分别的事件。我们可以使用 split 过滤器来完成。
logstash_json_fileter.conf
input {
file {
path => [ "/Users/liuxg/data/logstash_json/sample.json" ]
start_position => "beginning"
sincedb_path => "/dev/null"
}
}
filter {
json {
source => "message"
}
if [paymentType] == "Mastercard" {
drop{}
}
date {
match => [ "timestamp", "ISO8601" ]
locale => en
}
mutate {
remove_field => ["message", "path", "host", "@version", "timestamp"]
}
split {
field => "[pastEvents]"
}
}
output {
stdout {
codec => rubydebug
}
}
从上面我们可以看出来 postEvents 数组被拆分,并形成多个文档。上面的最终文档还是有些美中不足:eventId 及 transactionId 还是处于 pastEvents 对象之下。我们想把它移到和 id 同一级的位置。为此,我们做如下的修改:
logstash_json_fileter.conf
input {
file {
path => [ "/Users/liuxg/data/logstash_json/sample.json" ]
start_position => "beginning"
sincedb_path => "/dev/null"
}
}
filter {
json {
source => "message"
}
if [paymentType] == "Mastercard" {
drop{}
}
date {
match => [ "timestamp", "ISO8601" ]
locale => en
}
split {
field => "[pastEvents]"
}
mutate {
add_field => {
"eventId" => "%{[pastEvents][eventId]}"
"transactionId" => "%{[pastEvents][transactionId]}"
}
remove_field => ["message", "path", "host", "@version", "timestamp", "pastEvents"]
}
}
output {
stdout {
codec => rubydebug
}
elasticsearch {
index => "logstash_json"
}
}
重新运行 Logstash。我们可以看到如下的输出:
在上面,我们把 eventId 及 transactionId 移到文档的根下面,并删除 pastEvents 这个字段。我们同时也把文档导入到 Elasticsearch 中。
我们可以在 Elasticsearch 中对文档进行搜索:
GET logstash_json/_search
{
"took" : 1,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 4,
"relation" : "eq"
},
"max_score" : 1.0,
"hits" : [
{
"_index" : "logstash_json",
"_type" : "_doc",
"_id" : "JXZRAHgBoLC90rTy6jNl",
"_score" : 1.0,
"_source" : {
"gender" : "Female",
"@timestamp" : "2020-02-18T12:27:35.000Z",
"id" : 5,
"country" : "Brazil",
"name" : "Betteanne Diament",
"paymentType" : "Visa",
"transactionId" : "76436-101",
"eventId" : "9",
"ip_address" : "159.148.102.98",
"age" : 41,
"purpose" : "Computers"
}
},
{
"_index" : "logstash_json",
"_type" : "_doc",
"_id" : "KHZRAHgBoLC90rTy6jNl",
"_score" : 1.0,
"_source" : {
"gender" : "Male",
"@timestamp" : "2019-06-10T18:01:32.000Z",
"id" : 4,
"country" : "Pakistan",
"name" : "Cary Boyes",
"paymentType" : "Visa",
"transactionId" : "55926-0011",
"eventId" : "8",
"ip_address" : "223.113.73.232",
"age" : 46,
"purpose" : "Grocery"
}
},
...