给定一个二叉树,判断其是否是一个有效的二叉搜索树。
假设一个二叉搜索树具有如下特征:
节点的左子树只包含小于当前节点的数。
节点的右子树只包含大于当前节点的数。
所有左子树和右子树自身必须也是二叉搜索树。
示例 1:
输入:
2
/
1 3
输出: true
示例 2:
输入:
5
/
1 4
/
3 6
输出: false
解释: 输入为: [5,1,4,null,null,3,6]。
根节点的值为 5 ,但是其右子节点值为 4 。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def isValidBST(self, root: TreeNode) -> bool:
def helper(node, lower = float('-inf'), upper = float('inf')):
if not node:
return True
val = node.val
if val <= lower or val >= upper:
return False
if not helper(node.right, val, upper):
return False
if not helper(node.left, lower, val):
return False
return True
return helper(root)
class Solution:
def isValidBST(self, root):
"""
:type root: TreeNode
:rtype: bool
"""
stack, inorder = [], float('-inf')
while stack or root:
while root:
stack.append(root)
root = root.left
root = stack.pop()
# 如果中序遍历得到的节点的值小于等于前一个 inorder,说明不是二叉搜索树
if root.val <= inorder:
return False
inorder = root.val
root = root.right
return True