文章地址:Inductive Representation Learning on Large Graphs
论文中,无监督学习的损失公式是:
v是u的k阶邻居,论文中的实现是在长度为k 的random walk 序列中共现,vn 是从多项分布中抽样得到的,抽取时的权重是节点的度或入度。
dgl 给出的负采样示例代码:
class NegativeSampler(object):
def __init__(self, g, k, neg_share=False):
self.weights = g.in_degrees().float() ** 0.75
self.k = k
self.neg_share = neg_share
def __call__(self, g, eids):
src, _ = g.find_edges(eids)
n = len(src)
if self.neg_share and n % self.k == 0:
dst = self.weights.multinomial(n, replacement=True)
dst = dst.view(-1, 1, self.k).expand(-1, self.k, -1).flatten()
else:
dst = self.weights.multinomial(n*self.k, replacement=True)
src = src.repeat_interleave(self.k)
return src, dst