zoukankan      html  css  js  c++  java
  • 转 实例详解Django的 select_related 和 prefetch_related 函数对 QuerySet 查询的优化(三)

    这是本系列的最后一篇,主要是select_related() 和 prefetch_related() 的最佳实践。

    第一篇在这里 讲例子和select_related()

    第二篇在这里 讲prefetch_related()

    4. 一些实例

    选择哪个函数
    如果我们想要获得所有家乡是湖北的人,最无脑的做法是先获得湖北省,再获得湖北的所有城市,最后获得故乡是这个城市的人。就像这样:

    >>> hb = Province.objects.get(name__iexact=u"湖北省")
    >>> people = []
    >>> for city in hb.city_set.all():
    ... people.extend(city.birth.all())
    ...
    显然这不是一个明智的选择,因为这样做会导致1+(湖北省城市数)次SQL查询。反正是个反例,导致的查询和获得掉结果就不列出来了。

    prefetch_related() 或许是一个好的解决方法,让我们来看看。
    >>> hb = Province.objects.prefetch_related("city_set__birth").objects.get(name__iexact=u"湖北省")
    >>> people = []
    >>> for city in hb.city_set.all():
    ... people.extend(city.birth.all())
    ...
    因为是一个深度为2的prefetch,所以会导致3次SQL查询:
    SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
    FROM `QSOptimize_province`
    WHERE `QSOptimize_province`.`name` LIKE '湖北省' ;

    SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`
    FROM `QSOptimize_city`
    WHERE `QSOptimize_city`.`province_id` IN (1);

    SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`, `QSOptimize_person`.`lastname`,
    `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id`
    FROM `QSOptimize_person`
    WHERE `QSOptimize_person`.`hometown_id` IN (1, 3);

    嗯...看上去不错,但是3次查询么?倒过来查询可能会更简单?
    >>> people = list(Person.objects.select_related("hometown__province").filter(hometown__province__name__iexact=u"湖北省"))
    SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`, `QSOptimize_person`.`lastname`,
    `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id`, `QSOptimize_city`.`id`,
    `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`, `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
    FROM `QSOptimize_person`
    INNER JOIN `QSOptimize_city` ON (`QSOptimize_person`.`hometown_id` = `QSOptimize_city`.`id`)
    INNER JOIN `QSOptimize_province` ON (`QSOptimize_city`.`province_id` = `QSOptimize_province`.`id`)
    WHERE `QSOptimize_province`.`name` LIKE '湖北省';
    +----+-----------+----------+-------------+-----------+----+--------+-------------+----+--------+
    | id | firstname | lastname | hometown_id | living_id | id | name | province_id | id | name |
    +----+-----------+----------+-------------+-----------+----+--------+-------------+----+--------+
    | 1 | 张 | 三 | 3 | 1 | 3 | 十堰市 | 1 | 1 | 湖北省 |
    | 2 | 李 | 四 | 1 | 3 | 1 | 武汉市 | 1 | 1 | 湖北省 |
    | 3 | 王 | 麻子 | 3 | 2 | 3 | 十堰市 | 1 | 1 | 湖北省 |
    +----+-----------+----------+-------------+-----------+----+--------+-------------+----+--------+
    3 rows in set (0.00 sec)
    完全没问题。不仅SQL查询的数量减少了,python程序上也精简了。

    select_related()的效率要高于prefetch_related()。因此,最好在能用select_related()的地方尽量使用它,也就是说,对于ForeignKey字段,避免使用prefetch_related()。

    联用
    对于同一个QuerySet,你可以同时使用这两个函数。
    在我们一直使用的例子上加一个model:Order (订单)
    class Order(models.Model):
    customer = models.ForeignKey(Person)
    orderinfo = models.CharField(max_length=50)
    time = models.DateTimeField(auto_now_add = True)
    def __unicode__(self):
    return self.orderinfo
    如果我们拿到了一个订单的id 我们要知道这个订单的客户去过的省份。因为有ManyToManyField显然必须要用prefetch_related()。如果只用prefetch_related()会怎样呢?
    >>> plist = Order.objects.prefetch_related('customer__visitation__province').get(id=1)
    >>> for city in plist.customer.visitation.all():
    ... print city.province.name
    ...
    显然,关系到了4个表:Order、Person、City、Province,根据prefetch_related()的特性就得有4次SQL查询
    SELECT `QSOptimize_order`.`id`, `QSOptimize_order`.`customer_id`, `QSOptimize_order`.`orderinfo`, `QSOptimize_order`.`time`
    FROM `QSOptimize_order`
    WHERE `QSOptimize_order`.`id` = 1 ;

    SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`, `QSOptimize_person`.`lastname`, `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id`
    FROM `QSOptimize_person`
    WHERE `QSOptimize_person`.`id` IN (1);

    SELECT (`QSOptimize_person_visitation`.`person_id`) AS `_prefetch_related_val`, `QSOptimize_city`.`id`,
    `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`
    FROM `QSOptimize_city`
    INNER JOIN `QSOptimize_person_visitation` ON (`QSOptimize_city`.`id` = `QSOptimize_person_visitation`.`city_id`)
    WHERE `QSOptimize_person_visitation`.`person_id` IN (1);

    SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
    FROM `QSOptimize_province`
    WHERE `QSOptimize_province`.`id` IN (1, 2);
    +----+-------------+---------------+---------------------+
    | id | customer_id | orderinfo | time |
    +----+-------------+---------------+---------------------+
    | 1 | 1 | Info of Order | 2014-08-10 17:05:48 |
    +----+-------------+---------------+---------------------+
    1 row in set (0.00 sec)

    +----+-----------+----------+-------------+-----------+
    | id | firstname | lastname | hometown_id | living_id |
    +----+-----------+----------+-------------+-----------+
    | 1 | 张 | 三 | 3 | 1 |
    +----+-----------+----------+-------------+-----------+
    1 row in set (0.00 sec)

    +-----------------------+----+--------+-------------+
    | _prefetch_related_val | id | name | province_id |
    +-----------------------+----+--------+-------------+
    | 1 | 1 | 武汉市 | 1 |
    | 1 | 2 | 广州市 | 2 |
    | 1 | 3 | 十堰市 | 1 |
    +-----------------------+----+--------+-------------+
    3 rows in set (0.00 sec)

    +----+--------+
    | id | name |
    +----+--------+
    | 1 | 湖北省 |
    | 2 | 广东省 |
    +----+--------+
    2 rows in set (0.00 sec)


    更好的办法是先调用一次select_related()再调用prefetch_related(),最后再select_related()后面的表
    >>> plist = Order.objects.select_related('customer').prefetch_related('customer__visitation__province').get(id=1)
    >>> for city in plist.customer.visitation.all():
    ... print city.province.name
    ...
    这样只会有3次SQL查询,Django会先做select_related,之后prefetch_related的时候会利用之前缓存的数据,从而避免了1次额外的SQL查询:
    SELECT `QSOptimize_order`.`id`, `QSOptimize_order`.`customer_id`, `QSOptimize_order`.`orderinfo`, 
    `QSOptimize_order`.`time`, `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`, 
    `QSOptimize_person`.`lastname`, `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id` 
    FROM `QSOptimize_order` 
    INNER JOIN `QSOptimize_person` ON (`QSOptimize_order`.`customer_id` = `QSOptimize_person`.`id`) 
    WHERE `QSOptimize_order`.`id` = 1 ;

    SELECT (`QSOptimize_person_visitation`.`person_id`) AS `_prefetch_related_val`, `QSOptimize_city`.`id`, 
    `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id` 
    FROM `QSOptimize_city` 
    INNER JOIN `QSOptimize_person_visitation` ON (`QSOptimize_city`.`id` = `QSOptimize_person_visitation`.`city_id`) 
    WHERE `QSOptimize_person_visitation`.`person_id` IN (1);

    SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name` 
    FROM `QSOptimize_province` 
    WHERE `QSOptimize_province`.`id` IN (1, 2);
    +----+-------------+---------------+---------------------+----+-----------+----------+-------------+-----------+
    | id | customer_id | orderinfo | time | id | firstname | lastname | hometown_id | living_id |
    +----+-------------+---------------+---------------------+----+-----------+----------+-------------+-----------+
    | 1 | 1 | Info of Order | 2014-08-10 17:05:48 | 1 | 张 | 三 | 3 | 1 |
    +----+-------------+---------------+---------------------+----+-----------+----------+-------------+-----------+
    1 row in set (0.00 sec)

    +-----------------------+----+--------+-------------+
    | _prefetch_related_val | id | name   | province_id |
    +-----------------------+----+--------+-------------+
    |                     1 |  1 | 武汉市 |           1 |
    |                     1 |  2 | 广州市 |           2 |
    |                     1 |  3 | 十堰市 |           1 |
    +-----------------------+----+--------+-------------+
    3 rows in set (0.00 sec)

    +----+--------+
    | id | name |
    +----+--------+
    | 1 | 湖北省 |
    | 2 | 广东省 |
    +----+--------+
    2 rows in set (0.00 sec)

    值得注意的是,可以在调用prefetch_related之前调用select_related,并且Django会按照你想的去做:先select_related,然后利用缓存到的数据prefetch_related。然而一旦prefetch_related已经调用,select_related将不起作用。

    小结
    因为select_related()总是在单次SQL查询中解决问题,而prefetch_related()会对每个相关表进行SQL查询,因此select_related()的效率通常比后者高。
    鉴于第一条,尽可能的用select_related()解决问题。只有在select_related()不能解决问题的时候再去想prefetch_related()。
    你可以在一个QuerySet中同时使用select_related()和prefetch_related(),从而减少SQL查询的次数。
    只有prefetch_related()之前的select_related()是有效的,之后的将会被无视掉。

    关于这两个函数,我能想到的东西目前只有这么多。不过基于一些个人原因,写第三篇时间比较短,写的有些仓促。如果什么时候又想起了什么,我会在这篇博文中添加。
    ---------------------
    作者:CuGBabyBeaR
    来源:CSDN
    原文:https://blog.csdn.net/cugbabybear/article/details/38460877
    版权声明:本文为博主原创文章,转载请附上博文链接!

  • 相关阅读:
    Hsl PLC
    .NET平台常用框架整理
    SSH全注解实例详解
    word2vec (CBOW、分层softmax、负采样)
    pandas dataframe 一行变多行 (query pv统计term pv)
    python 按二维数组的某行或列排序 (numpy lexsort)
    基于决策树的分类算法
    【linux】 mail/mutt 发送邮件
    【python】含中文字符串截断
    【python】 判断纯ascii串
  • 原文地址:https://www.cnblogs.com/saolv/p/10975474.html
Copyright © 2011-2022 走看看