zoukankan      html  css  js  c++  java
  • 最短路径Dijkstra算法和Floyd算法整理、

    转载自:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html

    最短路径—Dijkstra算法和Floyd算法

    Dijkstra算法

    1.定义概览

    Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。注意该算法要求图中不存在负权边。

    问题描述:在无向图 G=(V,E) 中,假设每条边 E[i] 的长度为 w[i],找到由顶点 V0 到其余各点的最短路径。(单源最短路径)

    2.算法描述

    1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。

    2)算法步骤:

    a.初始时,S只包含源点,即S={v},v的距离为0。U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则<u,v>正常有权值,若u不是v的出边邻接点,则<u,v>权值为∞。

    b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。

    c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。

    d.重复步骤b和c直到所有顶点都包含在S中。

    执行动画过程如下图

    3.算法代码实现:

    复制代码
    const int  MAXINT = 32767;
    const int MAXNUM = 10;
    int dist[MAXNUM];
    int prev[MAXNUM];
    
    int A[MAXUNM][MAXNUM];
    
    void Dijkstra(int v0)
    {
        bool S[MAXNUM];                                  // 判断是否已存入该点到S集合中
          int n=MAXNUM;
        for(int i=1; i<=n; ++i)
        {
            dist[i] = A[v0][i];
            S[i] = false;                                // 初始都未用过该点
            if(dist[i] == MAXINT)    
                  prev[i] = -1;
            else 
                  prev[i] = v0;
         }
         dist[v0] = 0;
         S[v0] = true;   
        for(int i=2; i<=n; i++)
        {
             int mindist = MAXINT;
             int u = v0;                               // 找出当前未使用的点j的dist[j]最小值
             for(int j=1; j<=n; ++j)
                if((!S[j]) && dist[j]<mindist)
                {
                      u = j;                             // u保存当前邻接点中距离最小的点的号码 
                      mindist = dist[j];
                }
             S[u] = true; 
             for(int j=1; j<=n; j++)
                 if((!S[j]) && A[u][j]<MAXINT)
                 {
                     if(dist[u] + A[u][j] < dist[j])     //在通过新加入的u点路径找到离v0点更短的路径  
                     {
                         dist[j] = dist[u] + A[u][j];    //更新dist 
                         prev[j] = u;                    //记录前驱顶点 
                      }
                  }
         }
    }
    复制代码

    4.算法实例

    先给出一个无向图

    用Dijkstra算法找出以A为起点的单源最短路径步骤如下

    Floyd算法

    1.定义概览

    Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包。Floyd-Warshall算法的时间复杂度为O(N3),空间复杂度为O(N2)。

    2.算法描述

    1)算法思想原理:

         Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)

          从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。

    2).算法描述:

    a.从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。   

    b.对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比己知的路径更短。如果是更新它。

    3).Floyd算法过程矩阵的计算----十字交叉法

    方法:两条线,从左上角开始计算一直到右下角 如下所示

    给出矩阵,其中矩阵A是邻接矩阵,而矩阵Path记录u,v两点之间最短路径所必须经过的点

    相应计算方法如下:

    最后A3即为所求结果

    3.算法代码实现

    复制代码
    typedef struct          
    {        
        char vertex[VertexNum];                                //顶点表         
        int edges[VertexNum][VertexNum];                       //邻接矩阵,可看做边表         
        int n,e;                                               //图中当前的顶点数和边数         
    }MGraph; 
    
    void Floyd(MGraph g) {   int A[MAXV][MAXV];   int path[MAXV][MAXV];   int i,j,k,n=g.n;   for(i=0;i<n;i++)   for(j=0;j<n;j++)   {    A[i][j]=g.edges[i][j];    path[i][j]=-1;   }   for(k=0;k<n;k++)   {   for(i=0;i<n;i++)   for(j=0;j<n;j++)   if(A[i][j]>(A[i][k]+A[k][j]))   {
      A[i][j]=A[i][k]+A[k][j];   path[i][j]=k;   }  }
    }
    复制代码

    算法时间复杂度:O(n3)

  • 相关阅读:
    把redhat5.4-linux2.6.18内核升级到2.6.24 vmware虚拟机中
    webdeploy 使用总结(二)
    System.Web.UI.Page 详解(转)
    Dapper常用方法总结
    webdeploy 使用总结(一)
    Log4Net 详解(转)
    C# 日志工具汇总(转)
    Global.asax 详解(转)
    Transfer与Redirect区别(转)
    web.config配置节system.webServer的子元素详细介绍
  • 原文地址:https://www.cnblogs.com/sasuke-/p/5225832.html
Copyright © 2011-2022 走看看