zoukankan      html  css  js  c++  java
  • tarjan图论算法

    tarjan图论算法

    标签: tarjan 图论 模板


    洛谷P3387 【模板】缩点

    P3387题目展示
    算法:Tarjan有向图强连通分量+缩点+DAGdp

    代码:

    #include <cstdio>
    #include <cstring>
    #include <vector>
    #include <queue>
    #include <algorithm>
    #include <iostream>
    #define psk push_back
    using namespace std;
    
    const int MAXN = 1e5 + 50;
    
    int dfn[MAXN], low[MAXN], dfscnt = 0, scccnt = 0;
    int sccnum[MAXN], s[MAXN], in[MAXN], top = 0;
    int p0[MAXN], p[MAXN], d[MAXN];
    
    vector<int> G[MAXN], G0[MAXN];
    queue<int> q;
    
    inline int read()
    {
        int res = 0, f = 1;
        char ch;
        ch = getchar();
    
        while(!isdigit(ch)){
            if(ch == '-')
                f = -1;
    
            ch = getchar();
        }
    
        while(isdigit(ch)){
            res = res * 10 + ch - 48;
    
            ch = getchar();
        }
    
        return f * res;
    }
    void tarjan(int now)
    {
        dfn[now] = low[now] = ++ dfscnt;
        s[top ++] = now;
    
        for(int i = 0; i < G0[now].size(); i ++){
            int v = G0[now][i];
    
            if(!dfn[v]){
                tarjan(v);
                low[now] = min(low[now], low[v]);
            }
            else if(!sccnum[v])
                low[now] = min(low[now], dfn[v]);
        }
    
        if(low[now] == dfn[now]){
    
            scccnt ++;
    
            do{
                sccnum[s[-- top]] = scccnt;
            }while(s[top] != now);
    
        }
        return;
    }
    
    int topoo()
    {
    
        for(int i = 1; i <= scccnt; i ++)
            if(!in[i]){
                d[i] = p[i];
                q.push(i);
    
    
            }
    
    
        while(!q.empty()){
            int u = q.front();q.pop();
    
            for(int i = 0; i < G[u].size(); i ++){
                int v = G[u][i];
    
                if(d[v] < d[u] + p[v])
                    d[v] = d[u] + p[v];
    
                in[v] --;
    
                if(!in[v])
                    q.push(v);
            }
        }
    
        return *max_element(d + 1, d + 1 + scccnt);
    }
    
    
    int main()
    {
        int n, m;
    
        n = read(), m = read();
    
        for(int i = 1; i <= n; i ++)
            p0[i] = read();
    
        for(int i = 0; i < m; i ++){
            int u, v;
    
            u = read(), v = read();
    
            G0[u].psk(v);
        }
    
        for(int i = 1; i <= n; i ++)
            if(!dfn[i])
                tarjan(i);
    
        for(int i = 1; i <= n; i ++){
            p[sccnum[i]] += p0[i];
    
            for(int j = 0; j < G0[i].size(); j ++){
                int v = G0[i][j];
                if(sccnum[i] == sccnum[v])
                    continue;
                G[sccnum[i]].psk(sccnum[v]);
    
                in[sccnum[v]] ++;
            }
        }
    
        printf("%d", topoo());
    
        return 0;
    }
    

    洛谷P3388 【模板】割点(割顶)

    P3388题目展示

    算法:tarjan求无向图割点割边
    代码:

    #include <cstdio>
    #include <cstring>
    #include <vector>
    #include <iostream>
    #define pbk push_back
    using namespace std;
    
    const int MAXN = 1e5 + 50;
    
    int dfn[MAXN], low[MAXN], n, m;
    int dfscnt = 0, iscut[MAXN];
    
    vector<int> G[MAXN];
    
    inline int read()
    {
        int res = 0, f = 1;
    
        char ch;
    
        ch = getchar();
    
        while(!isdigit(ch)){
            if(ch == '-')
                f = -1;
    
            ch = getchar();
        }
    
    
        while(isdigit(ch)){
            res = (res << 3) + (res << 1) + ch - 48;
    
            ch = getchar();
        }
    
        return f * res;
    }
    void tarjan(int now, int rt)
    {
        int chcnt = 0;
    
        dfn[now] = low[now] = ++ dfscnt;
    
        for(int i = 0; i < G[now].size(); i ++){
            int v = G[now][i];
    
            if(!dfn[v]){
                tarjan(v, rt);
                low[now] = min(low[now], low[v]);
    
                if(now == rt)
                    chcnt ++;
                else if(low[v] >= dfn[now])
                    iscut[now] = 1;
            }
    
            else
                low[now] = min(low[now], dfn[v]);
        }
    
        if(chcnt >= 2)
            iscut[now] = 1;
        return;
    }
    
    int main()
    {
        int n, m, tot = 0;
    
        n = read(), m = read();
    
        for(int i = 0; i < m; i ++){
            int u, v;
    
            u = read(), v = read();
    
            G[u].pbk(v);
            G[v].pbk(u);
        }
    
        for(int i = 1; i <= n; i ++)
            if(!dfn[i])
                tarjan(i, i);
    
        for(int i = 1; i <= n; i ++)
            if(iscut[i])
                tot ++;
        printf("%d
    ", tot);
        for(int i = 1; i <= n; i ++)
            if(iscut[i])
                printf("%d ", i);
    
        return 0;
    }
    
    

    求无向图边双连通分量

    #include <cstdio>
    #include <cstring>
    #include <vector>
    #include <queue>
    #include <algorithm>
    #include <iostream>
    #define pbk push_back
    using namespace std;
    
    const int MAXN = 1e5 + 50;
    
    vector<int> G[MAXN], bcc[MAXN];
    
    int low[MAXN], dfn[MAXN], bnum[MAXN], s[MAXN];
    int n, m, top = 0, dfscnt = 0, bcnt = 0;
    
    inline int read()
    {
        int res = 0, f = 1;
        char ch;
    
        ch = getchar();
    
        while(!isdigit(ch)){
            if(ch == '-')
                f = -1;
    
            ch = getchar();
        }
    
        while(isdigit(ch)){
            res = (res << 3) + (res << 1) + ch - 48;
    
            ch = getchar();
        }
    
        return f * res;
    }
    void tarjan(int now, int fa)
    {
        dfn[now] = low[now] = ++ bcnt;
        s[top ++] = now;
    
        int flag = 0;
        for(int i = 0; i < G[now].size(); i ++){
            int v = G[now][i];
    
            if(v == fa && !flag){
                flag = 1;
                continue;
            }
    
            if(!dfn[v]){
                tarjan(v, now);
                low[now] = min(low[now], low[v]);
            }
            else if(!bnum[v])
                low[now] = min(low[now], dfn[v]);
        }
    
        if(low[now] == dfn[now]){
            bcnt ++;
    
            do{
                bnum[s[-- top]] = bcnt;
                bcc[bcnt].pbk(s[top]);
            }while(s[top] != now);
        }
    
        return ;
    }
    int main()
    {
        n = read(), m = read();
    
        for(int i = 0; i < m; i ++){
            int u, v;
    
            u = read(), v = read();
    
            G[u].pbk(v);
            G[v].pbk(u);
        }
    
        for(int i = 1; i <= n; i ++)
            if(!dfn[i])
                tarjan(i, 0);
    
        printf("%d
    ", bcnt);
    
        for(int i = 1; i <= bcnt; i ++){
    
            printf("%d ", i);
    
            for(int j = 0; j < bcc[i].size(); j ++)
                printf("%d ", bcc[i][j]);
            printf("
    ");
        }
        return 0;
    }
    
    

    求无向图点双连通分量

    #include <cstdio>
    #include <cstring>
    #include <vector>
    #include <queue>
    #include <algorithm>
    #include <iostream>
    #define pbk push_back
    using namespace std;
    
    const int MAXN = 1e5 + 50;
    
    int low[MAXN], dfn[MAXN], n, m;
    int s[MAXN], top = 0, bcnt = 0, dfscnt = 0;
    
    vector<int> G[MAXN], bcc[MAXN];
    
    inline int read()
    {
        int res = 0, f = 1;
    
        char ch;
    
        ch = getchar();
    
        while(!isdigit(ch)){
            if(ch == '-')
                f = -1;
            ch = getchar();
        }
    
        while(isdigit(ch)){
            res = (res << 3) + (res << 1) + ch - 48;
    
            ch = getchar();
        }
    
        return f * res;
    }
    void tarjan(int now, int rt)
    {
        low[now] = dfn[now] = ++ bcnt;
    
        s[top ++] = now;
        if(now == rt && !G[now].size()){
            bcc[++ bcnt].pbk(s[-- top]);
            return ;
        }
        for(int i = 0; i < G[now].size(); i ++){
            int v = G[now][i];
    
            if(!dfn[v]){
                tarjan(v, rt);
                low[now] = min(low[now], low[v]);
    
                if(low[v] >= dfn[now]){
                    do{
                        bcnt ++;
    
                        bcc[bcnt].pbk(s[--top]);
                    }while(s[top] != v);
    
                    bcc[bcnt].pbk(now);
                }
            }
            else
                low[now] = min(low[now], dfn[v]);
        }
        return;
    
    }
    
    int main()
    {
        n = read(), m = read();
    
        for(int i = 0; i < m; i ++){
            int u, v;
            u = read(), v = read();
    
            G[u].pbk(v);
            G[v].pbk(u);
        }
    
    
        for(int i = 1; i <= n; i ++){
            if(!dfn[i])
                tarjan(i, i);
    
        }
    
        for(int i = 1; i <= bcnt; i ++){
            printf("%d ", i);
            for(int j = 0; j < bcc[i].size(); j ++)
                printf("%d ", bcc[i][j]);
            printf("
    ");
        }
    
        return 0;
    }
    
    
  • 相关阅读:
    SQLite学习手册(开篇)
    SQLite学习手册(索引和数据分析/清理)
    SQLite学习手册(在线备份)
    SQLite学习手册(数据类型)
    SQLite学习手册(表达式)
    SQLite学习手册(C/C++接口简介)
    SQLite学习手册(命令行工具)
    (转)Graphical Execution Plans for Simple SQL Queries
    诡异的Request
    今天用windows live writer 2009写博客了
  • 原文地址:https://www.cnblogs.com/satchelpp/p/11626035.html
Copyright © 2011-2022 走看看