zoukankan      html  css  js  c++  java
  • [2018HN省队集训D1T1] Tree

    [2018HN省队集训D1T1] Tree

    题意

    给定一棵带点权树, 要求支持下面三种操作:

    • 1 rootroot 设为根.
    • 2 u v d 将以 (operatorname{LCA} (u,v)) 为根的子树中的点权值加上 (d).
    • 3 u 查询以 (u) 为根的子树中的点的权值之和.

    初始时根为 (1).

    (n,qle3 imes 10^5)

    时限 (1 exttt{s}).

    题解

    垃圾卡常题毁我青春

    写这个题解主要是存板子的...毕竟LCT上比较科学优雅地实现LCA需要改板子...但是我的LCT长得比较滑稽没几个人写得和我一样

    考场上主要思路是当成把换根子树修改和换根LCA分开算, 子树修改可以对DFS序建线段树解决. 具体做法是分类讨论新根 (p) /原来的根 (r) /要修改的子树的根 (u) 三个点的位置关系. 若 (u) 不在 (p)(r) 的路径上, 那么直接修改 (u) 在以 (r) 为根的子树即可. 否则设 (u ightarrow v leadsto r), 那么除了 (v) 的子树之外的所有点都要修改, 分两段解决或者先整体加再子树减也可以.

    换根LCA是LCT的标准操作. 比较科学地求LCA需要在 Access 的时候返回最后一次连接的虚边的父亲侧结点, 就可以两次 Access 求出LCA了.

    考场上打完没过样例发现Access的时候把虚子树连到Splay左儿子去了囧...

    然后这题数据丧病地出到了 3e5 所以需要常数优化一下比如加个快读3e5的读入量还不加快读显然是自己作死吧

    参考代码

    #include <bits/stdc++.h>
    
    const int MAXE=1e6+10;
    const int MAXV=3e5+10;
    typedef long long intEx;
    
    struct Edge{
    	int from;
    	int to;
    	Edge* next;
    };
    Edge E[MAXE];
    Edge* head[MAXV];
    Edge* top=E;
    
    struct LCT{
    #define lch chd[0]
    #define rch chd[1]
    #define kch chd[k]
    #define xch chd[k^1]
    	struct Node{
    		int id;
    		bool rev;
    		Node* prt;
    		Node* pprt;
    		Node* chd[2];
    		Node(int id):id(id),rev(false),prt(NULL),pprt(NULL),chd{NULL,NULL}{}
    		inline void Flip(){
    			if(this!=NULL){
    				this->rev=!this->rev;
    				std::swap(this->lch,this->rch);
    			}
    		}
    		inline void PushDown(){
    			if(this!=NULL&&this->rev){
    				this->lch->Flip();
    				this->rch->Flip();
    				this->rev=false;
    			}
    		}
    	};
    	std::vector<Node*> N;
    	LCT(int n):N(n+1){
    		for(int i=1;i<=n;i++)
    			N[i]=new Node(i);
    	}
    	inline void Rotate(Node* root,int k){
    		Node* tmp=root->xch;
    		root->PushDown();
    		tmp->PushDown();
    		tmp->prt=root->prt;
    		if(root->prt==NULL){
    			tmp->pprt=root->pprt;
    			root->pprt=NULL;
    		}
    		else if(root->prt->lch==root)
    			root->prt->lch=tmp;
    		else
    			root->prt->rch=tmp;
    		root->xch=tmp->kch;
    		if(root->xch!=NULL)
    			root->xch->prt=root;
    		tmp->kch=root;
    		root->prt=tmp;
    	}
    	inline void Splay(Node* root){
    		while(root->prt!=NULL){
    			int k=root->prt->lch==root;
    			if(root->prt->prt==NULL)
    				Rotate(root->prt,k);
    			else{
    				int d=root->prt->prt->lch==root->prt;
    				Rotate(k==d?root->prt->prt:root->prt,k);
    				Rotate(root->prt,d);
    			}
    		}
    	}
    	inline void Expose(Node* root){
    		Splay(root);
    		root->PushDown();
    		if(root->rch!=NULL){
    			root->rch->prt=NULL;
    			root->rch->pprt=root;
    			root->rch=NULL;
    		}
    	}
    	inline	Node* Access(Node* root){
    		Expose(root);
    		Node* ret=root;
    		while(root->pprt!=NULL){
    			ret=root->pprt;
    			Expose(root->pprt);
    			root->pprt->rch=root;
    			root->prt=root->pprt;
    			root->pprt=NULL;
    			Splay(root);
    		}
    		return ret;
    	}
    	inline	void Evert(Node* root){
    		Access(root);
    		Splay(root);
    		root->Flip();
    	}
    	inline	void Evert(int root){
    		Evert(N[root]);
    	}
    	inline	void Link(int prt,int son){
    		Evert(N[son]);
    		N[son]->pprt=N[prt];
    	}
    	inline	int LCA(int x,int y){
    		Access(N[x]);
    		return Access(N[y])->id;
    	}
    #undef lch
    #undef rch
    #undef kch
    #undef xch
    };
    
    struct Node{
    	int l;
    	int r;
    	intEx add;
    	intEx sum;
    	Node* lch;
    	Node* rch;
    	Node(int,int);
    	void Maintain();
    	void PushDown();
    	intEx Query(int,int);
    	void Add(const intEx&);
    	void Add(int,int,const intEx&);
    };
    
    int n;
    int q;
    int clk;
    int val[MAXV];
    int pos[MAXV];
    int dfn[MAXV];
    int deep[MAXV];
    int size[MAXV];
    int prt[20][MAXV];
    
    void ReadInt(int&);
    void Insert(int,int);
    int Ancestor(int,int);
    void DFS(int,int,int);
    
    int main(){
    	ReadInt(n);
    	ReadInt(q);
    	for(int i=1;i<=n;i++)
    		ReadInt(val[i]);
    	LCT* T=new LCT(n);
    	for(int i=1;i<n;i++){
    		int a,b;
    		ReadInt(a);
    		ReadInt(b);
    		Insert(a,b);
    		Insert(b,a);
    		T->Link(a,b);
    	}
    	DFS(1,0,0);
    	for(int i=1;(1<<i)<=n;i++)
    		for(int j=1;j<=n;j++)
    			prt[i][j]=prt[i-1][prt[i-1][j]];
    	Node* N=new Node(1,n);
    	T->Evert(1);
    	int root=1;
    	for(int i=0;i<q;i++){
    		int t;
    		ReadInt(t);
    		if(t==1){
    			ReadInt(root);
    			T->Evert(root);
    		}
    		else if(t==2){
    			int a,b,d;
    			ReadInt(a);
    			ReadInt(b);
    			ReadInt(d);
    			int lca=T->LCA(a,b);
    			if(lca==root)
    				N->Add(1,n,d);
    			else if(deep[lca]>=deep[root])
    				N->Add(dfn[lca],dfn[lca]+size[lca]-1,d);
    			else if(Ancestor(root,deep[root]-deep[lca])==lca){
    				int x=Ancestor(root,deep[root]-deep[lca]-1);
    				N->Add(1,n,d);
    				N->Add(dfn[x],dfn[x]+size[x]-1,-d);
    			}
    			else
    				N->Add(dfn[lca],dfn[lca]+size[lca]-1,d);
    		}
    		else if(t==3){
    			int r;
    			ReadInt(r);
    			intEx ans=0;
    			if(r==root)
    				ans=N->Query(1,n);
    			else if(deep[r]>=deep[root])
    				ans=N->Query(dfn[r],dfn[r]+size[r]-1);
    			else if(Ancestor(root,deep[root]-deep[r])==r){
    				int x=Ancestor(root,deep[root]-deep[r]-1);
    				ans+=N->Query(1,n);
    				ans-=N->Query(dfn[x],dfn[x]+size[x]-1);
    			}
    			else
    				ans=N->Query(dfn[r],dfn[r]+size[r]-1);
    			printf("%lld
    ",ans);
    		}
    	}
    	return 0;
    }
    
    inline int Ancestor(int cur,int k){
    	for(int i=0;(1<<i)<=k;i++)
    		if((1<<i)&k)
    			cur=prt[i][cur];
    	return cur;
    }
    
    void DFS(int root,int prt,int deep){
    	::size[root]=1;
    	::dfn[root]=++clk;
    	::deep[root]=deep;
    	::prt[0][root]=prt;
    	::pos[dfn[root]]=root;
    	for(Edge* i=head[root];i!=NULL;i=i->next){
    		if(i->to!=prt){
    			DFS(i->to,root,deep+1);
    			size[root]+=size[i->to];
    		}
    	}
    }
    
    inline void Insert(int from,int to){
    	top->from=from;
    	top->to=to;
    	top->next=head[from];
    	head[from]=top++;
    }
    
    Node::Node(int l,int r):l(l),r(r),add(0),lch(NULL),rch(NULL){
    	if(l==r)
    		sum=val[pos[l]];
    	else{
    		int mid=(l+r)>>1;
    		this->lch=new Node(l,mid);
    		this->rch=new Node(mid+1,r);
    		this->sum=this->lch->sum+this->rch->sum;
    	}
    }
    
    void Node::Add(int l,int r,const intEx& d){
    	if(l<=this->l&&this->r<=r)
    		this->Add(d);
    	else{
    		this->PushDown();
    		if(l<=this->lch->r)
    			this->lch->Add(l,r,d);
    		if(this->rch->l<=r)
    			this->rch->Add(l,r,d);
    		this->Maintain();
    	}
    }
    
    intEx Node::Query(int l,int r){
    	if(l<=this->l&&this->r<=r)
    		return this->sum;
    	else{
    		this->PushDown();
    		if(r<=this->lch->r)
    			return this->lch->Query(l,r);
    		if(this->rch->l<=l)
    			return this->rch->Query(l,r);
    		return this->lch->Query(l,r)+this->rch->Query(l,r);
    	}
    }
    
    void Node::Maintain(){
    	this->sum=this->lch->sum+this->rch->sum;
    }
    
    void Node::PushDown(){
    	if(this->add){
    		this->lch->Add(this->add);
    		this->rch->Add(this->add);
    		this->add=0;
    	}
    }
    
    inline void Node::Add(const intEx& d){
    	this->add+=d;
    	this->sum+=d*(r-l+1);
    }
    
    inline void ReadInt(int& target){
    	target=0;
    	int sgn=1;
    	register char ch=getchar();
    	while(!isdigit(ch)){
    		if(ch=='-')
    			sgn=-sgn;
    		ch=getchar();
    	}
    	while(isdigit(ch)){
    		target=target*10+ch-'0';
    		ch=getchar();
    	}
    	target*=sgn;
    }
    
    

  • 相关阅读:
    java mail实现Email的发送,完整代码
    Android NetworkOnMainThreadException异常
    Anguler Js 表单验证(邮箱)
    Android 调用系统邮件,发送邮件到指定邮箱
    Android 解决ScrollView下嵌套ListView进页面不在顶部的问题
    Eclipse 出错 Error:Could not create the Java Virtual Machine Error:A fatal exception has occurred
    Eclipse "Could not create java virtual machine"的问题解决
    Elasticsearch之watcher(告警)插件安装之后的浏览详解
    Elasticsearch之shield(权限)插件安装之后的浏览详解
    Elasticsearch之源码分析(shard分片规则)
  • 原文地址:https://www.cnblogs.com/rvalue/p/10450895.html
Copyright © 2011-2022 走看看