zoukankan      html  css  js  c++  java
  • [CodeForces

    [CodeForces - 1225D]Power Products 【数论】 【分解质因数】

    标签:题解 codeforces题解 数论


    题目描述

    Time limit
    2000 ms
    Memory limit
    524288 kB
    Source
    Technocup 2020 - Elimination Round 2
    Tags
    hashing math number theory *1900
    Site
    https://codeforces.com/problemset/problem/1225/D

    题面

    CodeForces - 1225D.png

    Example
    Input

    6 3
    1 3 9 8 24 1

    Output

    5

    题目大意

    给定(n, k),序列(a[1 cdots n])。问在该序列中能找到多少组序偶(<i, j>)满足(a_i cdot a_j = x ^ k)(其中(x)可以为任意整数)。

    例如,
    (n = 6, k = 3, a[1 cdots n] = [1, 3, 9, 8, 24, 1])
    则有$$a_1 cdot a_4 = 1 cdot 8 = 8 = 2 ^ 3 a_1 cdot a_6 = 1 cdot 1 = 1 = 1 ^ 3 a_2 cdot a_3 = 3 cdot 9 = 27 = 3 ^ 3 a_3 cdot a_5 = 9 cdot 24 = 216 = 6 ^ 3 a_4 cdot a_6 = 8 cdot 1 = 8 = 2 ^ 3 $$
    共五组情况,所以输出5。


    解析

    这道题是一道比较裸的数论题,很容易让人直接想到质因数分解。虽然我没有想到,当时打比赛都没有做到D题。

    • 这题首先不考虑数论的知识,把这种求序偶个数的问题抽象出来。

      把这道题抽象为给定(n, k),序列(a[1 cdots n])。问在该序列中能找到多少组序偶(<i, j>)满足(a_i + a_j = k)
      这个问题其实很好解决,只要稍微想一下就可以得出答案。令(cnt[i][j])为到第(i)个位置,数字(j)在之前出现的次数。那么答案应该是(sum_i^ncnt[i][k - a[i]])

      在实际编程过程中,因为我们每到一个数(a[i])(cnt[i][a[i]])实际上是在上一个(cnt[i - 1][a[i]])基础上得来的,而这个(cnt[i - 1][a[i]])之后就再也没有用了,其他的(cnt[i - 1][1 cdots INF])也没有改变,所以我们可以将这个(cnt)数组降到一维,这个思想也叫作滚动数组。

    • 下面回到这个问题,把关键的(a_i cdot a_j = x ^ k)加入其中。

      首先我们要知道当给定了(k),即使(x)的值是不确定的,对于(t cdot s = x ^ k),对于每一个(t)都只有唯一的(s)与之对应。
      (t)质因数分解,得

    [t = p_1^{alpha_1} cdot p_2^{alpha_2} cdot p_3^{alpha_3} cdot dots \ t_0 = p_1^{alpha_1\% k} cdot p_2^{alpha_2\% k} cdot p_3^{alpha_3\% k} cdot dots ]

    则$$s = p_1^{k - (alpha_1 % k)} cdot p_2^{k - (alpha_2 % k)} cdot p_3^{k - (alpha_3 % k)} cdot dots$$
    所以对于每个(t)我们只要看之前有多少个这样的(s)出现就可以了。

    而对于每个(a_i(t))我们实际上要记录的是它的(t_0)形式,因为只有这种形式才对答案有贡献。

    • 这样我们在对每个(a_i)进行质因数分解的时候就顺带把(s)的值也求出来,最后(sum_i^ncnt[x ^ k div a[i]])即为答案((cnt)为滚动数组,即到当前(i)位置,之前的数字(x ^ k div a[i])出现的个数)。

    通过代码

    /*
    Status
    	Accepted
    Time
    	46ms
    Memory
    	396kB
    Length
    	1076
    Lang
    	GNU G++11 5.1.0
    Submitted
    	2019-12-20 16:42:32
    RemoteRunId
    	67272043
    */
    
    #include <bits/stdc++.h>
    using namespace std;
    
    typedef long long ll;
    const int MAXN = 1e5 + 50;
    
    int cnt[MAXN];
    int x, n, k;
    ll y;                       //注意y要开long long.
    
    inline int read()           //快读,1e5数据输入量.
    {
        int res = 0;
        char ch;
    
        ch = getchar();
    
        while(!isdigit(ch))
            ch = getchar();
    
        while(isdigit(ch)){
            res = (res << 3) + (res << 1) + ch - 48;
            ch = getchar();
        }
    
        return res;
    }
    void work(int p, int &t)
    {
        int c = 0;
    
        while(t % p == 0)
            t /= p, c ++;
        c %= k;
    
        for(int i = 0; i < c; i ++)
            x *= p;
    
        for(int i = 0; i < (k - c) % k; i ++){           //(k - c) % k是针对c为0的情况的特判.
            y *= p;
    
            if(y >= MAXN){
                y = MAXN;
                break;
            }
        }
    
        return;
    }
    
    int main()
    {
        ll ans = 0;
    
        n = read(), k = read();
    
        for(int i = 1; i <= n; i ++){
            int t;
            t = read();
            x = y = 1;                                //x对应的是t0,y对应的是s.
    
            for(int j = 2; j * j <= t; j ++)         //质因数分解.
                if(t % j == 0)   work(j, t);
    
            if(t > 1)  work(t, t);
    
            if(y < MAXN){                          //如果得到的y超过1e5,就超过范围找不到了,就没有意义.
                ans += cnt[y];
                cnt[x] ++;
            }
        }
    
        printf("%I64d", ans);
        return 0;
    }
    
    

  • 相关阅读:
    split a string into an array through comma
    正则表达式替换日期
    在Ajax1.0中调用页面CS文件中的方法
    半透明的div对话框
    foreach 的自动转化类型
    ViewStateAutoManager
    using ISerializable to control serialization and deserialization
    div with separated html template
    2018.9.9作业
    CSS单位
  • 原文地址:https://www.cnblogs.com/satchelpp/p/12074426.html
Copyright © 2011-2022 走看看