zoukankan      html  css  js  c++  java
  • Educational Codeforces Round 16 C 思维 D 中国剩余(不互质) E dp递推,思维

    Educational Codeforces Round 16

    C. Magic Odd Square

    题意:数字1到n*n,排成n行n列,要使得每行、每列和两条主对角线上的数之和为奇数。

    tags:从中心开始观察,每一圈都可以是奇偶交替,所以搞几个for循环就好。  注:多动手在草稿纸上画

    #include<bits/stdc++.h>
    using namespace std;
    #pragma comment(linker, "/STACK:102400000,102400000")
    #define FF(i,a,b) for (int i=a;i<=b;i++)
    #define F(i,b,a)  for (int i=b;i>=a;i--)
    #define mes(a,b)  memset(a,b,sizeof(a))
    #define INF 0x3f3f3f3f
    typedef long long ll;
    const int N = 2e5+10;
    
    int a[500][500], n;
    int main()
    {
        scanf("%d", &n);
        int m=n/2+1, t=1;
        FF(i,1,m) {
            F(l,m,i) a[i][l]=t++;
            FF(l,i+1,n-i+1) a[l][i]=t++;
            FF(l,i+1,n-i+1) a[n-i+1][l]=t++;
            F(l,n-i,i) a[l][n-i+1]=t++;
            F(l,n-i,m+1) a[i][l]=t++;
        }
        FF(i,1,n) {
            FF(j,1,n) printf("%d  ", a[i][j]);
            puts("");
        }
    
        return 0;
    }
    View Code

    D. Two Arithmetic Progressions

    题意:有y=a1*x1+b1,y=a1*x2+b2。给出a1、b1、a2、b2、L、R, 求在[L,R]内,有多少个满足条件的y。

    tags:终于体会到有板子的好处了。

    很明显,拓展中国剩余定理。  有个点,y可以先限制范围,即L=max(L, max(a[1], a[2])) 。  然后合并以后,不知道怎么确定出的范围,23333。。

    #include<bits/stdc++.h>
    using namespace std;
    #pragma comment(linker, "/STACK:102400000,102400000")
    #define rep(i,a,b) for (int i=a;i<=b;i++)
    #define per(i,b,a) for (int i=b;i>=a;i--)
    #define mes(a,b)  memset(a,b,sizeof(a))
    #define INF 0x3f3f3f3f
    typedef long long ll;
    const int N = 10;
    
    ll L, R, cur, mm;
    ll a[N], m[N];  
        
    ll gcd(ll a,ll b)  
    {  
        return b? gcd(b, a % b) : a;  
    }  
    void extend_Euclid(ll a, ll b, ll &x, ll &y)  
    {  
        if(b == 0)  
        {  
            x = 1;  
            y = 0;  
            return;  
        }  
        extend_Euclid(b, a % b, x, y);  
        ll tmp = x;  
        x = y;  
        y = tmp - (a / b) * y;  
    }  
    ll Inv(ll a, ll b)  
    {  
        ll d = gcd(a, b);  
        if(d != 1) return -1;  
        ll x, y;  
        extend_Euclid(a, b, x, y);  
        return (x % b + b) % b;  
    }  
    bool merge(ll a1, ll m1, ll a2, ll m2, ll &a3, ll &m3)  
    {  
        ll d = gcd(m1, m2);  
        ll c = a2 - a1;  
        if(c % d) return false;  
        c = (c % m2 + m2) % m2;  
        m1 /= d;  
        m2 /= d;  
        c /= d;  
        c *= Inv(m1, m2);  
        c %= m2;  
        c *= m1 * d;  
        c += a1;  
        m3 = m1 * m2 * d;  
        a3 = (c % m3 + m3) % m3;  
        return true;  
    }  
    ll CRT(ll a[], ll m[], int n)  
    {  
        ll a1 = a[1];  
        ll m1 = m[1];  
        for(int i=2; i<=n; i++)  
        {  
            ll a2 = a[i];  
            ll m2 = m[i];  
            ll m3, a3;  
            if(!merge(a1, m1, a2, m2, a3, m3))  
                return -1;  
            a1 = a3;  
            m1 = m3;  
        }  
        cur=a1, mm=m1;
        return (a1 % m1 + m1) % m1;  
    }  
    
    int main()
    {
        scanf("%lld %lld %lld %lld %lld %lld", &m[1], &a[1], &m[2], &a[2], &L, &R);
        L=max(L, max(a[1], a[2]));
        ll ans=CRT(a, m, 2);
        if(ans==-1)    return 0*printf("0
    ");
        ans=0;
        if(cur >= L)  cur-= ((cur-L)/mm+1)*mm; 
        if(L <= R)  ans = (R-cur)/mm-(L-1-cur)/mm; 
        printf("%lld
    ", ans);
    
        return 0;
    }
    View Code

    E. Generate a String

    题意:要得到n个字符,有三种操作:输入一个花费x;删除一个花费x;复制粘贴花费y。

    tags:很容易想到dp,增加和复制操作好办,但删除很麻烦。由复制可以联想到奇偶性。当要得到偶数个字符时,通过删除得到肯定是不如增加和复制得到快。想到这里就明白直接递推就行。

    #include<bits/stdc++.h>
    using namespace std;
    #pragma comment(linker, "/STACK:102400000,102400000")
    #define FF(i,a,b) for (int i=a;i<=b;i++)
    #define F(i,b,a)  for (int i=b;i>=a;i--)
    #define mes(a,b)  memset(a,b,sizeof(a))
    #define INF 0x3f3f3f3f
    typedef long long ll;
    const int N = 1e7+10;
    
    int n, x, y;
    ll dp[N];
    int main()
    {
        scanf("%d%d%d", &n, &x, &y);
        FF(i,1,n) {
            if(i&1) dp[i]=min(dp[i-1]+x, dp[(i+1)/2]+y+x);
            else dp[i]=min(dp[i-1]+x, dp[i/2]+y);
        }
        printf("%lld
    ", dp[n]);
    
        return 0;
    }
    View Code
  • 相关阅读:
    Android:Service的非绑定式的创建和生命周期
    [NHibernate]缓存(NHibernate.Caches)
    [NHibernate]Parent/Child
    [NHibernate]关联映射
    [NHibernate]集合类(Collections)映射
    [NHibernate]O/R Mapping基础
    [NHibernate]持久化类(Persistent Classes)
    [js]uploadify结合jqueryUI弹出框上传,js中的冒出的bug,又被ie坑了
    [NHibernate]ISessionFactory配置
    [Nhibernate]体系结构
  • 原文地址:https://www.cnblogs.com/sbfhy/p/6384717.html
Copyright © 2011-2022 走看看