Educational Codeforces Round 16
题意:数字1到n*n,排成n行n列,要使得每行、每列和两条主对角线上的数之和为奇数。
tags:从中心开始观察,每一圈都可以是奇偶交替,所以搞几个for循环就好。 注:多动手在草稿纸上画。
#include<bits/stdc++.h> using namespace std; #pragma comment(linker, "/STACK:102400000,102400000") #define FF(i,a,b) for (int i=a;i<=b;i++) #define F(i,b,a) for (int i=b;i>=a;i--) #define mes(a,b) memset(a,b,sizeof(a)) #define INF 0x3f3f3f3f typedef long long ll; const int N = 2e5+10; int a[500][500], n; int main() { scanf("%d", &n); int m=n/2+1, t=1; FF(i,1,m) { F(l,m,i) a[i][l]=t++; FF(l,i+1,n-i+1) a[l][i]=t++; FF(l,i+1,n-i+1) a[n-i+1][l]=t++; F(l,n-i,i) a[l][n-i+1]=t++; F(l,n-i,m+1) a[i][l]=t++; } FF(i,1,n) { FF(j,1,n) printf("%d ", a[i][j]); puts(""); } return 0; }
D. Two Arithmetic Progressions
题意:有y=a1*x1+b1,y=a1*x2+b2。给出a1、b1、a2、b2、L、R, 求在[L,R]内,有多少个满足条件的y。
tags:终于体会到有板子的好处了。
很明显,拓展中国剩余定理。 有个点,y可以先限制范围,即L=max(L, max(a[1], a[2])) 。 然后合并以后,不知道怎么确定出的范围,23333。。
#include<bits/stdc++.h> using namespace std; #pragma comment(linker, "/STACK:102400000,102400000") #define rep(i,a,b) for (int i=a;i<=b;i++) #define per(i,b,a) for (int i=b;i>=a;i--) #define mes(a,b) memset(a,b,sizeof(a)) #define INF 0x3f3f3f3f typedef long long ll; const int N = 10; ll L, R, cur, mm; ll a[N], m[N]; ll gcd(ll a,ll b) { return b? gcd(b, a % b) : a; } void extend_Euclid(ll a, ll b, ll &x, ll &y) { if(b == 0) { x = 1; y = 0; return; } extend_Euclid(b, a % b, x, y); ll tmp = x; x = y; y = tmp - (a / b) * y; } ll Inv(ll a, ll b) { ll d = gcd(a, b); if(d != 1) return -1; ll x, y; extend_Euclid(a, b, x, y); return (x % b + b) % b; } bool merge(ll a1, ll m1, ll a2, ll m2, ll &a3, ll &m3) { ll d = gcd(m1, m2); ll c = a2 - a1; if(c % d) return false; c = (c % m2 + m2) % m2; m1 /= d; m2 /= d; c /= d; c *= Inv(m1, m2); c %= m2; c *= m1 * d; c += a1; m3 = m1 * m2 * d; a3 = (c % m3 + m3) % m3; return true; } ll CRT(ll a[], ll m[], int n) { ll a1 = a[1]; ll m1 = m[1]; for(int i=2; i<=n; i++) { ll a2 = a[i]; ll m2 = m[i]; ll m3, a3; if(!merge(a1, m1, a2, m2, a3, m3)) return -1; a1 = a3; m1 = m3; } cur=a1, mm=m1; return (a1 % m1 + m1) % m1; } int main() { scanf("%lld %lld %lld %lld %lld %lld", &m[1], &a[1], &m[2], &a[2], &L, &R); L=max(L, max(a[1], a[2])); ll ans=CRT(a, m, 2); if(ans==-1) return 0*printf("0 "); ans=0; if(cur >= L) cur-= ((cur-L)/mm+1)*mm; if(L <= R) ans = (R-cur)/mm-(L-1-cur)/mm; printf("%lld ", ans); return 0; }
题意:要得到n个字符,有三种操作:输入一个花费x;删除一个花费x;复制粘贴花费y。
tags:很容易想到dp,增加和复制操作好办,但删除很麻烦。由复制可以联想到奇偶性。当要得到偶数个字符时,通过删除得到肯定是不如增加和复制得到快。想到这里就明白直接递推就行。
#include<bits/stdc++.h> using namespace std; #pragma comment(linker, "/STACK:102400000,102400000") #define FF(i,a,b) for (int i=a;i<=b;i++) #define F(i,b,a) for (int i=b;i>=a;i--) #define mes(a,b) memset(a,b,sizeof(a)) #define INF 0x3f3f3f3f typedef long long ll; const int N = 1e7+10; int n, x, y; ll dp[N]; int main() { scanf("%d%d%d", &n, &x, &y); FF(i,1,n) { if(i&1) dp[i]=min(dp[i-1]+x, dp[(i+1)/2]+y+x); else dp[i]=min(dp[i-1]+x, dp[i/2]+y); } printf("%lld ", dp[n]); return 0; }