zoukankan      html  css  js  c++  java
  • Tensorflow 将训练模型保存为pd文件

    前言

    保存 模型有2种方法。

    方法

    1.使用TensorFlow模型保存函数

       save = tf.train.Saver()
       ......
       saver.save(sess,"checkpoint/model.ckpt",global_step=step)*
    

    得到3个结果

    model.ckpt-129220.data-00000-of-00001#保存了模型的所有变量的值。
    model.ckpt-129220.index
    model.ckpt-129220.meta  # 保存了graph结构,包括GraphDef, SaverDef等。存在时,可以不在文件中定义模型,也可以运行
    

    再将这3个文件保存为.pd文件

    
    import tensorflow as tf
    import deeplab_model
     
    def export_graph(model, checkpoint_dir, model_name):
        ...
        model: the defined model
        checkpoint_dir: the dir of three files
        model_name: the name of .pb
        ...
        graph = tf.Graph()
        with graph.as_default():
            ### 输入占位符
            input_img = tf.placeholder(tf.float32, shape=[None, None, None, 3], name='input_image')
            labels = tf.zeros([1, 512, 512,1])
            labels = tf.to_int32(tf.image.convert_image_dtype(labels, dtype=tf.uint8))
            ### 需要输出的Tensor
            output = model.deeplabv3_plus_model_fn(
                        input_img,
                        labels,
                        tf.estimator.ModeKeys.EVAL,
                        params={
                            'output_stride': 16,
                            'batch_size': 1,  # Batch size must be 1 because the images' size may differ
                            'base_architecture': 'resnet_v2_50',
                            'pre_trained_model': None,
                            'batch_norm_decay': None,
                            'num_classes': 2,
                            'freeze_batch_norm': True
                        }).predictions['classes']
            ### 给输出的tensor命名
            output = tf.identity(output, name='output_label')
            restore_saver = tf.train.Saver()
     
        with tf.Session(graph=graph) as sess:
            ### 初始化变量
            sess.run(tf.global_variables_initializer())
            ### load the model
            restore_saver.restore(sess, checkpoint_dir)
            
            output_graph_def = tf.graph_util.convert_variables_to_constants(
                sess, graph.as_graph_def(), [output.op.name])
            ### 将图写成.pb文件
            tf.train.write_graph(output_graph_def, 'pretrained', model_name, as_text=False)
     
    ### 调用函数,生成.pd文件
    export_graph(deeplab_model, 'model/model.ckpt-133958', 'model.pd')
     
    ### 读取
     
    import tensorflow as tf
    import os
     
    def inference():
        with tf.gfile.FastGFile('pretrained/model.pd', 'rb') as model_file:
            graph = tf.Graph()
            graph_def = tf.GraphDef()
            graph_def.ParseFromString(model_file.read())
            [output_image] = tf.import_graph_def(graph_def,
                              input_map={'input_image': images},
                              return_elements=['output_label:0'],
                              name='output')
            sess = tf.Session()
            label = sess.run(output_image)
            return label
    labels = inference()
    
    

    2.直接保存

    import tensorflow as tf
    from tensorflow.python.framework import graph_util
    var1 = tf.Variable(1.0, dtype=tf.float32, name='v1')
    var2 = tf.Variable(2.0, dtype=tf.float32, name='v2')
    var3 = tf.Variable(2.0, dtype=tf.float32, name='v3')
    x = tf.placeholder(dtype=tf.float32, shape=None, name='x')
    x2 = tf.placeholder(dtype=tf.float32, shape=None, name='x2')
    addop = tf.add(x, x2, name='add')
    addop2 = tf.add(var1, var2, name='add2')
    addop3 = tf.add(var3, var2, name='add3')
    initop = tf.global_variables_initializer()
    model_path = './Test/model.pb'
    with tf.Session() as sess:
        sess.run(initop)
        print(sess.run(addop, feed_dict={x: 12, x2: 23}))
        output_graph_def = graph_util.convert_variables_to_constants(sess, sess.graph_def, ['add', 'add2', 'add3'])
        # 将计算图写入到模型文件中
        model_f = tf.gfile.FastGFile(model_path, mode="wb")
        model_f.write(output_graph_def.SerializeToString())
    
    ####读取代码:
    import tensorflow as tf
    with tf.Session() as sess:
        model_f = tf.gfile.FastGFile("./Test/model.pb", mode='rb')
        graph_def = tf.GraphDef()
        graph_def.ParseFromString(model_f.read())
        c = tf.import_graph_def(graph_def, return_elements=["add2:0"])
        c2 = tf.import_graph_def(graph_def, return_elements=["add3:0"])
        x, x2, c3 = tf.import_graph_def(graph_def, return_elements=["x:0", "x2:0", "add:0"])
    
        print(sess.run(c))
        print(sess.run(c2))
        print(sess.run(c3, feed_dict={x: 23, x2: 2}))
    
  • 相关阅读:
    [csp-s模拟测试72] 简单的期望
    [csp-s模拟测试72] 简单的序列
    csp-s模拟测试70
    经验积累
    [csp-s模拟测试69] 回滚莫队
    [模板]主席树查前趋后继
    复习及学习计划
    错排公式
    csp-s模拟测试 56~65
    LIS LCS LCIS
  • 原文地址:https://www.cnblogs.com/schips/p/12148020.html
Copyright © 2011-2022 走看看