zoukankan      html  css  js  c++  java
  • Chapter2二分与前缀和

    Chapter 2 二分与前缀和

    +++

    • 二分

    • 套路

    如果更新方式写的是R = mid, 则不用做任何处理,如果更新方式写的是L = mid,则需要在计算mid是加上1。

    1.数的范围 789

    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    //整数二分
    using namespace std;
    
    int st[100005];
    int n, q;
    int u;
    
    int main()
    {
        scanf("%d%d", &n, &q);
        for(int i = 0; i < n; i++)
            scanf("%d", &st[i]);
        while(q--)
        {
            int L = 0; int R = n - 1;
            scanf("%d", &u);
            while(L < R)
            {
                int md = L + R >> 1;
                if(st[md] >= u) R = md;//注意边界问题
                else L = md + 1;
            }
            if(st[R] == u)
            {
                cout << R << " ";
                R = n - 1;
                while(L < R)
                {
                    int md = L + R + 1 >> 1;//注意边界问题
                    if(st[md] <= u) L = md;
                    else R = md - 1;
                }
                cout << L << endl;
            }
            else    cout << "-1 -1" << endl;
        }
        return 0;
    }
    

    2.数的三次方根 790

    #include <iostream>
    //实数二分
    using namespace std;
    
    int main()
    {
        double n;
        cin >> n;
        double l = -10000, r = 10000;
        while(r - l > 1e-8)
        {
            double mid = (l + r) / 2;
            if(mid * mid * mid >= n)   r = mid;
            else l = mid;
        }
        printf("%f
    ", l);
        return 0;
    }
    

    3.机器人跳跃问题 730

    //AC code
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    
    using namespace std;
    
    const int maxn = 1e5 + 5;
    int h[maxn], temp, n;
    
    int main()
    {
        cin >> n;
        for(int i = 0; i < n; i++)
            scanf("%d", h + i);
        int l = 0, r = 1e5;
        while(l < r)
        {
            int mid =(l + r) >> 1;//注意边界问题
            temp = mid;
            for(int i = 0; i < n && mid >= 0; i++)
            {
                mid = mid * 2 - h[i];
                if(mid >= 1e5)  break;   //没有这句ac不了,防止中间过程爆掉
            }
            if(mid >= 0)
                r = temp;
            else
                l = temp + 1;
        }
        cout << r << endl;
        return 0;
    }
    

    4.四平方和 1221

    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    
    using namespace std;
    
    const int maxn = 5e6;//注意
    int n, m;
    
    struct Sum{
        int s, c, d;
        
        bool operator< (const Sum &t)const
        {
            if(s != t.s)    return s < t.s;
            if(c != t.c)    return c < t.c;
            return d < t.d;
        }
    }p[maxn];
    
    int main()
    {
        cin >> n;
        for(int c = 0; c * c <= n; c++ )
            for(int d = c; d * d + c * c <= n; d++ )
                p[m++] = {c * c + d * d, c, d};
        
        sort(p, p + m);
        
        for(int a = 0; a * a <= n; a++ )
            for(int b = a; b * b + a * a <= n; b++ )
            {
                int t = n - a * a - b * b;
                int l = 0, r = m - 1;
                while(l < r)
                {
                    int mid = (l + r) >> 1;
                    if(p[mid].s >= t)  r = mid;
                    else l = mid + 1;
                }
                if(p[l].s == t)
                {
                    printf("%d %d %d %d
    ", a, b, p[l].c, p[l].d);
                    return 0;
                }
            }
    }
    
    5.分巧克力 1227
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    
    using namespace std;
    
    const int maxn = 100010;
    int n, k;
    int h[maxn], w[maxn];
    
    bool check(int u)
    {
        int sum = 0;
        for(int i = 0; i < n; i++)
            sum += (h[i] / u) * (w[i] / u);
        if(sum >= k)    return true;
        return false;
    }
    
    int main()
    {
        cin >> n >> k;
        for(int i = 0; i < n; i++)
            scanf("%d%d", h + i, w + i);
        int L = 1, R = 1e5;
        while(L < R)
        {
            int mid = L + R + 1 >> 1;
            if(check(mid))  L = mid;
            else R = mid - 1;
        }
        cout << R << endl;
        return 0;
    }
    

    +++

    • 前缀和

    1.前缀和 795
    //一维数组前缀和
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    
    using namespace std;
    
    const int maxn = 100010;
    
    int a[maxn], s[maxn];
    int n, m;
    
    int main()
    {
        cin >> n >> m;
        for(int i = 1; i <= n; i++ )
        {
            scanf("%d", a + i);
            s[i] = s[i - 1] + a[i];//存储前i个数的和
        }
        while(m--)
        {
            int x, y;
            scanf("%d%d", &x, &y);
            printf("%d
    ", s[y] - s[x - 1]);
        }
        return 0;
    }
    
    2.子矩阵的和 796
    // 二维数组前缀和
    #include <iostream>
    #include <cstring>
    #include <cstdio>
    #include <algorithm>
    
    using namespace std;
    
    const int maxn = 1010;
    int a[maxn][maxn], s[maxn][maxn];
    int n, m, q;
    
    int main()
    {
        scanf("%d%d%d", &n, &m, &q);
        for(int i = 1; i <= n; i++ )
            for(int j = 1; j <= m; j++ )
            {
                scanf("%d", &a[i][j]);
                s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + a[i][j];
            }
        while(q--)
        {
            int x1, y1, x2, y2;
            scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
            printf("%d
    ", s[x2][y2] - s[x1 - 1][y2] - s[x2][y1 - 1] + s[x1 - 1][y1 - 1]);
        }
        return 0;
    }
    
    3.激光炸弹 99
    
    
    4.K倍区间 1230

    //优化时间复杂度

    //O(n)
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    
    using namespace std;
    
    typedef long long LL;
    
    const int maxn = 100010;
    int s[maxn], cnt[maxn];
    int n, k, temp;
    LL res;
    
    int main()
    {
        cnt[0] = 1;
        cin >> n >> k;
        for(int i = 1; i <= n; i++ )
        {
            scanf("%d", &temp);
            s[i] = (s[i - 1] + temp) % k;
            res += cnt[s[i]];
            cnt[s[i]]++;
        }
        
        printf("%lld
    ", res);
        return 0;
    }
    
    K倍区间学习到的经验:

    1.首先因为知道考的是前缀和,我就用O(n²)的复杂度的二重for循环暴力枚举,果不其然超时,然后就没有了进一步的简化思路。

    2.好的思路是从简单暴力的方法中优化出来的,就如本题的AC code,把复杂度降到了O(n),成功AC。

    3.找到右端点后遍历前面所有前缀和,符合K倍区间性质的其实就是mod k后与右端点前缀和mod k后余数相等的点。(

  • 相关阅读:
    字符串匹配的KMP算法
    附加数据库出错
    SQL Server 2005
    OpenFileDialog对话框Filter属性
    flink run 报错java.lang.NoSuchMethodError: org.apache.hadoop.ipc.Client.getRpcTimeout(Lorg/apache/hadoop/conf/Configuration;)I
    修改cdh5集群中主机节点IP或hostName
    oracle 自增序列 在 mybatis中应用
    org.apache.ibatis.binding.BindingException: Invalid bound statement (not found):
    java远程连接hadoop,kerbers认证失败 报no supported default etypes for default_tkt_enctypes
    hive distribute by sort by 去重
  • 原文地址:https://www.cnblogs.com/scl0725/p/12358133.html
Copyright © 2011-2022 走看看