zoukankan      html  css  js  c++  java
  • 【2018.10.1】【JSOI2016】最佳团体(bzoj4753)

    一看到“比值”最大(性价比最高)就知道跟分数规划有关系了。(这里讲过分数规划)

    然后看到 要选一个候选人 必须选他的前置,画画图就知道是一棵树。

    所以这道题是二分比值,每个点的权值就是战斗力-费用*比值,然后判断在树上能否得到权值和$geq 0$的方案。

    那怎么判断?

    这篇的T1讲过,典型的树上背包,像那道T1一样在树上暴力转移即可。其实这题的父子依赖性质跟那道T1差不多,因为连通块就是一片父子的依赖关系(当然最上边的根节点的祖先是还没处理到的)。

    那树上每个点都要遍历一下它的所有儿子,对于每个儿子还要枚举以这个儿子为根的子树中选出的点的数量。

    二分的时间复杂度是$O(log(ans))$,转移的时间复杂度$O(n^2)$。总时间复杂度是$O(n^2*log(ans))$。


    这里证明一下转移的时间复杂度:

    直观上看是$i,j,k$三重循环。

    但是每个儿子的$n^2$个dp值只会更新给它的父亲。

    换句话说,有一重循环是枚举儿子,而这是一棵树,每个儿子(也就是每个点)只会被枚举一次。

    所以树上背包的时间复杂度就是$O(n^2+n)$而不是$O(n^3)$。


    update:这是另一个大佬写的T2(此题)题解

  • 相关阅读:
    Java 中几种常用的线程池
    阿里巴巴java工程师面试经验详情
    设计模式-备忘录模式
    设计模式-职责链模式
    设计模式-中介者模式
    设计模式-解释器模式
    设计模式-观察者模式
    设计模式-迭代器模式
    设计模式-命令模式
    设计模式-模板方法模式
  • 原文地址:https://www.cnblogs.com/scx2015noip-as-php/p/9734969.html
Copyright © 2011-2022 走看看