zoukankan      html  css  js  c++  java
  • Code Lock 并查集&&二分求幂

    Problem Description
    A lock you use has a code system to be opened instead of a key. The lock contains a sequence of wheels. Each wheel has the 26 letters of the English alphabet 'a' through 'z', in order. If you move a wheel up, the letter it shows changes to the next letter in the English alphabet (if it was showing the last letter 'z', then it changes to 'a').
    At each operation, you are only allowed to move some specific subsequence of contiguous wheels up. This has the same effect of moving each of the wheels up within the subsequence.
    If a lock can change to another after a sequence of operations, we regard them as same lock. Find out how many different locks exist?
     
    Input
    There are several test cases in the input.

    Each test case begin with two integers N (1<=N<=10000000) and M (0<=M<=1000) indicating the length of the code system and the number of legal operations. 
    Then M lines follows. Each line contains two integer L and R (1<=L<=R<=N), means an interval [L, R], each time you can choose one interval, move all of the wheels in this interval up.

    The input terminates by end of file marker.
     
    Output
    For each test case, output the answer mod 1000000007
     
    Sample Input
    1 1
    1 1
    2 1
    1 2
     
    Sample Output
    1
    26
    ***************************************************************************************************************************
    并查集&&二分求幂
    ***************************************************************************************************************************
     1 /*
     2 并查集加二分求幂
     3 
     4 */
     5 #include<iostream>
     6 #include<string>
     7 #include<cstring>
     8 #include<cstdio>
     9 #include<queue>
    10 using namespace std;
    11 #define MOD 1000000007
    12 int fa[10000005];
    13 int i,j,k,n,m;
    14 void init()
    15 {
    16   for(int it=0;it<=n;it++)
    17   {
    18       fa[it]=it;
    19   }
    20 }
    21 int find(int x)
    22 {
    23     int r=x;
    24     while(r!=fa[r])
    25       r=fa[r];
    26     while(x!=r)
    27     {
    28         int temp=fa[x];
    29         fa[x]=r;
    30         x=temp;
    31     }
    32     return r;
    33 }
    34 bool Unon(int a,int b)
    35 {
    36     int x=find(a);
    37     int y=find(b);
    38     if(x==y)return false;
    39     fa[x]=y;
    40     return true;
    41 }
    42 __int64 pow(__int64 a,int b)
    43 {
    44     __int64 sum=1;
    45     while(b)
    46     {
    47         if(b&1)sum=(sum*a)%MOD;
    48         a=(a*a)%MOD;
    49         b>>=1;
    50     }
    51     return (sum%MOD);
    52 }
    53 int main()
    54 {
    55     while(scanf("%d%d",&n,&m)!=EOF)
    56     {
    57         init();
    58         int a,b,cnt=0;
    59         for(i=0;i<m;i++)
    60         {
    61             scanf("%d%d",&a,&b);
    62             a--;
    63             if(Unon(a,b))cnt++;
    64         }
    65         printf("%I64d
    ",pow((__int64)26,n-cnt));
    66     }
    67     return 0;
    68 }
    View Code
  • 相关阅读:
    实现对DataGird控件的绑定操作
    EasyUI-datagrid中load,reload,loadData方法的区别
    easui Pagination Layout
    easyUI datagrid 排序
    jQuery EasyUI教程之datagrid应用
    solr入门之多线程操作solr中索引字段的解决
    序列自相关矩阵的计算和分析
    UVa 12403
    滑动窗体的最大值(STL的应用+剑指offer)
    bzoj2101【Usaco2010 Dec】Treasure Chest 藏宝箱
  • 原文地址:https://www.cnblogs.com/sdau--codeants/p/3407489.html
Copyright © 2011-2022 走看看