zoukankan      html  css  js  c++  java
  • Code Lock 并查集&&二分求幂

    Problem Description
    A lock you use has a code system to be opened instead of a key. The lock contains a sequence of wheels. Each wheel has the 26 letters of the English alphabet 'a' through 'z', in order. If you move a wheel up, the letter it shows changes to the next letter in the English alphabet (if it was showing the last letter 'z', then it changes to 'a').
    At each operation, you are only allowed to move some specific subsequence of contiguous wheels up. This has the same effect of moving each of the wheels up within the subsequence.
    If a lock can change to another after a sequence of operations, we regard them as same lock. Find out how many different locks exist?
     
    Input
    There are several test cases in the input.

    Each test case begin with two integers N (1<=N<=10000000) and M (0<=M<=1000) indicating the length of the code system and the number of legal operations. 
    Then M lines follows. Each line contains two integer L and R (1<=L<=R<=N), means an interval [L, R], each time you can choose one interval, move all of the wheels in this interval up.

    The input terminates by end of file marker.
     
    Output
    For each test case, output the answer mod 1000000007
     
    Sample Input
    1 1
    1 1
    2 1
    1 2
     
    Sample Output
    1
    26
    ***************************************************************************************************************************
    并查集&&二分求幂
    ***************************************************************************************************************************
     1 /*
     2 并查集加二分求幂
     3 
     4 */
     5 #include<iostream>
     6 #include<string>
     7 #include<cstring>
     8 #include<cstdio>
     9 #include<queue>
    10 using namespace std;
    11 #define MOD 1000000007
    12 int fa[10000005];
    13 int i,j,k,n,m;
    14 void init()
    15 {
    16   for(int it=0;it<=n;it++)
    17   {
    18       fa[it]=it;
    19   }
    20 }
    21 int find(int x)
    22 {
    23     int r=x;
    24     while(r!=fa[r])
    25       r=fa[r];
    26     while(x!=r)
    27     {
    28         int temp=fa[x];
    29         fa[x]=r;
    30         x=temp;
    31     }
    32     return r;
    33 }
    34 bool Unon(int a,int b)
    35 {
    36     int x=find(a);
    37     int y=find(b);
    38     if(x==y)return false;
    39     fa[x]=y;
    40     return true;
    41 }
    42 __int64 pow(__int64 a,int b)
    43 {
    44     __int64 sum=1;
    45     while(b)
    46     {
    47         if(b&1)sum=(sum*a)%MOD;
    48         a=(a*a)%MOD;
    49         b>>=1;
    50     }
    51     return (sum%MOD);
    52 }
    53 int main()
    54 {
    55     while(scanf("%d%d",&n,&m)!=EOF)
    56     {
    57         init();
    58         int a,b,cnt=0;
    59         for(i=0;i<m;i++)
    60         {
    61             scanf("%d%d",&a,&b);
    62             a--;
    63             if(Unon(a,b))cnt++;
    64         }
    65         printf("%I64d
    ",pow((__int64)26,n-cnt));
    66     }
    67     return 0;
    68 }
    View Code
  • 相关阅读:
    3_数据类型
    2_十进制与二进制的互相转换
    1_初识Java
    Jedis 常用API
    Eazfuscator.net 2020 IL级指令虚拟化保护(Virtualization)机制分析
    C#实现——十大排序算法之选择排序
    Flutter 开发从 0 到 1(三)布局与 ListView
    使用 .NET 进行游戏开发
    Metasploit简单使用——后渗透阶段
    ElasticSearch 索引 VS MySQL 索引
  • 原文地址:https://www.cnblogs.com/sdau--codeants/p/3407489.html
Copyright © 2011-2022 走看看