zoukankan      html  css  js  c++  java
  • Choosing number 写出递推公式,然后用矩阵的快速幂。

    Description

    There are n people standing in a row. And There are m numbers, 1.2...m. Every one should choose a number. But if two persons standing adjacent to each other choose the same number, the number shouldn't equal or less than k. Apart from this rule, there are no more limiting conditions.

    And you need to calculate how many ways they can choose the numbers obeying the rule.

    Input

    There are multiple test cases. Each case contain a line, containing three integer n (2 ≤ n ≤ 108), m (2 ≤ m ≤ 30000), k(0 ≤ k ≤ m).

    Output

    One line for each case. The number of ways module 1000000007.

    Sample Input

    4 4 1
    

    Sample Output

    216
    ***********************************************************************************************************************************************************
    矩阵的快速幂dp[n][1]即取>=k的数时的方案总数,dp[n][2]即取<k时的方案总数
    dp[n][1]=dp[n-1][1]*(m-k)+dp[n-1][2]*(m-k);
    dp[n][2]=dp[n-1]*k+dp[n-1][2]*(k-1);
    列出矩阵
    : m-k m-k dp[n-1][1] dp[n][1]
    k k-1 dp[n-1][2] dp[n][2]
    可得由矩阵的快速幂快速求解
    ***********************************************************************************************************************************************************
     1 #include<iostream>
     2 #include<string>
     3 #include<cstring>
     4 #include<cmath>
     5 #include<cstdio>
     6 #include<algorithm>
     7 #define LL long long
     8 #define MOD 1000000007
     9 using namespace std;
    10 LL n,m,k;
    11 LL save[5][5];
    12 LL mod(LL m,LL n)
    13 {
    14     LL sum=1;
    15     while(n)
    16     {
    17         if(n&1)
    18            sum=(sum*m)%MOD;
    19         m=(m*m)%MOD;
    20         n=n>>1;
    21     }
    22     return sum;
    23 }
    24 int main()
    25 {
    26     while(scanf("%lld%lld%lld",&n,&m,&k)!=EOF)
    27     {
    28         if(k==0)
    29         {
    30             printf("%lld
    ",mod(m,n)%MOD);
    31             continue;
    32         }
    33         if(n==1)
    34         {
    35             printf("%lld
    ",m);
    36             continue;
    37         }
    38         save[1][1]=m-k;
    39         save[1][2]=m-k;
    40         save[2][1]=k;
    41         save[2][2]=k-1;
    42         LL ans1=m-k;
    43         LL ans2=k;
    44         n--;
    45         while(n)
    46         {
    47             if(n&1)
    48             {
    49                 LL temp1=(((ans1*save[1][1])%MOD)+((ans2*save[1][2])%MOD))%MOD;
    50                 LL temp2=(((ans1*save[2][1])%MOD)+((ans2*save[2][2])%MOD))%MOD;
    51                 ans1=temp1;
    52                 ans2=temp2;
    53             }
    54             n=n>>1;
    55             LL a1=(((save[1][1]*save[1][1])%MOD)+((save[1][2]*save[2][1])%MOD))%MOD;
    56             LL a2=(((save[1][2]*save[2][2])%MOD)+((save[1][1]*save[1][2])%MOD))%MOD;
    57             LL b1=(((save[2][2]*save[2][1])%MOD)+((save[2][1]*save[1][1])%MOD))%MOD;
    58             LL b2=(((save[2][2]*save[2][2])%MOD)+((save[2][1]*save[1][2])%MOD))%MOD;
    59             save[1][1]=a1; save[1][2]=a2;
    60             save[2][1]=b1; save[2][2]=b2;
    61 
    62         }
    63         printf("%lld
    ",(ans1+ans2)%MOD);
    64     }
    65     return 0;
    66 }
    View Code
  • 相关阅读:
    2019年第二周作业
    2019年pta作业第二题——求最大值及其下标
    2019春第十一周作业
    2019春第十周作业
    2019年寒假作业3
    2019年寒假作业2
    2019年寒假作业1
    我的老师
    自说
    Day16
  • 原文地址:https://www.cnblogs.com/sdau--codeants/p/3446454.html
Copyright © 2011-2022 走看看