zoukankan      html  css  js  c++  java
  • Choosing number 写出递推公式,然后用矩阵的快速幂。

    Description

    There are n people standing in a row. And There are m numbers, 1.2...m. Every one should choose a number. But if two persons standing adjacent to each other choose the same number, the number shouldn't equal or less than k. Apart from this rule, there are no more limiting conditions.

    And you need to calculate how many ways they can choose the numbers obeying the rule.

    Input

    There are multiple test cases. Each case contain a line, containing three integer n (2 ≤ n ≤ 108), m (2 ≤ m ≤ 30000), k(0 ≤ k ≤ m).

    Output

    One line for each case. The number of ways module 1000000007.

    Sample Input

    4 4 1
    

    Sample Output

    216
    ***********************************************************************************************************************************************************
    矩阵的快速幂dp[n][1]即取>=k的数时的方案总数,dp[n][2]即取<k时的方案总数
    dp[n][1]=dp[n-1][1]*(m-k)+dp[n-1][2]*(m-k);
    dp[n][2]=dp[n-1]*k+dp[n-1][2]*(k-1);
    列出矩阵
    : m-k m-k dp[n-1][1] dp[n][1]
    k k-1 dp[n-1][2] dp[n][2]
    可得由矩阵的快速幂快速求解
    ***********************************************************************************************************************************************************
     1 #include<iostream>
     2 #include<string>
     3 #include<cstring>
     4 #include<cmath>
     5 #include<cstdio>
     6 #include<algorithm>
     7 #define LL long long
     8 #define MOD 1000000007
     9 using namespace std;
    10 LL n,m,k;
    11 LL save[5][5];
    12 LL mod(LL m,LL n)
    13 {
    14     LL sum=1;
    15     while(n)
    16     {
    17         if(n&1)
    18            sum=(sum*m)%MOD;
    19         m=(m*m)%MOD;
    20         n=n>>1;
    21     }
    22     return sum;
    23 }
    24 int main()
    25 {
    26     while(scanf("%lld%lld%lld",&n,&m,&k)!=EOF)
    27     {
    28         if(k==0)
    29         {
    30             printf("%lld
    ",mod(m,n)%MOD);
    31             continue;
    32         }
    33         if(n==1)
    34         {
    35             printf("%lld
    ",m);
    36             continue;
    37         }
    38         save[1][1]=m-k;
    39         save[1][2]=m-k;
    40         save[2][1]=k;
    41         save[2][2]=k-1;
    42         LL ans1=m-k;
    43         LL ans2=k;
    44         n--;
    45         while(n)
    46         {
    47             if(n&1)
    48             {
    49                 LL temp1=(((ans1*save[1][1])%MOD)+((ans2*save[1][2])%MOD))%MOD;
    50                 LL temp2=(((ans1*save[2][1])%MOD)+((ans2*save[2][2])%MOD))%MOD;
    51                 ans1=temp1;
    52                 ans2=temp2;
    53             }
    54             n=n>>1;
    55             LL a1=(((save[1][1]*save[1][1])%MOD)+((save[1][2]*save[2][1])%MOD))%MOD;
    56             LL a2=(((save[1][2]*save[2][2])%MOD)+((save[1][1]*save[1][2])%MOD))%MOD;
    57             LL b1=(((save[2][2]*save[2][1])%MOD)+((save[2][1]*save[1][1])%MOD))%MOD;
    58             LL b2=(((save[2][2]*save[2][2])%MOD)+((save[2][1]*save[1][2])%MOD))%MOD;
    59             save[1][1]=a1; save[1][2]=a2;
    60             save[2][1]=b1; save[2][2]=b2;
    61 
    62         }
    63         printf("%lld
    ",(ans1+ans2)%MOD);
    64     }
    65     return 0;
    66 }
    View Code
  • 相关阅读:
    selenium+phantomjs爬取bilibili
    使用 python 开发 Web Service
    OBIEE 立方刷新的问题
    解析OracleOLAP使用MView刷新Cube
    Codeforces Round #755 (Div. 2, based on Technocup 2022 Elimination Round 2)(CF1589)题解
    Codeforces Round #754 (Div. 2)(CF1605)题解
    完美解读Linux中文件系统的目录结构
    C#中获取程序当前路径的集中方法
    30个优秀.net在线学习资源站点
    如何删除windows service(转帖)
  • 原文地址:https://www.cnblogs.com/sdau--codeants/p/3446454.html
Copyright © 2011-2022 走看看