zoukankan      html  css  js  c++  java
  • Choosing number 写出递推公式,然后用矩阵的快速幂。

    Description

    There are n people standing in a row. And There are m numbers, 1.2...m. Every one should choose a number. But if two persons standing adjacent to each other choose the same number, the number shouldn't equal or less than k. Apart from this rule, there are no more limiting conditions.

    And you need to calculate how many ways they can choose the numbers obeying the rule.

    Input

    There are multiple test cases. Each case contain a line, containing three integer n (2 ≤ n ≤ 108), m (2 ≤ m ≤ 30000), k(0 ≤ k ≤ m).

    Output

    One line for each case. The number of ways module 1000000007.

    Sample Input

    4 4 1
    

    Sample Output

    216
    ***********************************************************************************************************************************************************
    矩阵的快速幂dp[n][1]即取>=k的数时的方案总数,dp[n][2]即取<k时的方案总数
    dp[n][1]=dp[n-1][1]*(m-k)+dp[n-1][2]*(m-k);
    dp[n][2]=dp[n-1]*k+dp[n-1][2]*(k-1);
    列出矩阵
    : m-k m-k dp[n-1][1] dp[n][1]
    k k-1 dp[n-1][2] dp[n][2]
    可得由矩阵的快速幂快速求解
    ***********************************************************************************************************************************************************
     1 #include<iostream>
     2 #include<string>
     3 #include<cstring>
     4 #include<cmath>
     5 #include<cstdio>
     6 #include<algorithm>
     7 #define LL long long
     8 #define MOD 1000000007
     9 using namespace std;
    10 LL n,m,k;
    11 LL save[5][5];
    12 LL mod(LL m,LL n)
    13 {
    14     LL sum=1;
    15     while(n)
    16     {
    17         if(n&1)
    18            sum=(sum*m)%MOD;
    19         m=(m*m)%MOD;
    20         n=n>>1;
    21     }
    22     return sum;
    23 }
    24 int main()
    25 {
    26     while(scanf("%lld%lld%lld",&n,&m,&k)!=EOF)
    27     {
    28         if(k==0)
    29         {
    30             printf("%lld
    ",mod(m,n)%MOD);
    31             continue;
    32         }
    33         if(n==1)
    34         {
    35             printf("%lld
    ",m);
    36             continue;
    37         }
    38         save[1][1]=m-k;
    39         save[1][2]=m-k;
    40         save[2][1]=k;
    41         save[2][2]=k-1;
    42         LL ans1=m-k;
    43         LL ans2=k;
    44         n--;
    45         while(n)
    46         {
    47             if(n&1)
    48             {
    49                 LL temp1=(((ans1*save[1][1])%MOD)+((ans2*save[1][2])%MOD))%MOD;
    50                 LL temp2=(((ans1*save[2][1])%MOD)+((ans2*save[2][2])%MOD))%MOD;
    51                 ans1=temp1;
    52                 ans2=temp2;
    53             }
    54             n=n>>1;
    55             LL a1=(((save[1][1]*save[1][1])%MOD)+((save[1][2]*save[2][1])%MOD))%MOD;
    56             LL a2=(((save[1][2]*save[2][2])%MOD)+((save[1][1]*save[1][2])%MOD))%MOD;
    57             LL b1=(((save[2][2]*save[2][1])%MOD)+((save[2][1]*save[1][1])%MOD))%MOD;
    58             LL b2=(((save[2][2]*save[2][2])%MOD)+((save[2][1]*save[1][2])%MOD))%MOD;
    59             save[1][1]=a1; save[1][2]=a2;
    60             save[2][1]=b1; save[2][2]=b2;
    61 
    62         }
    63         printf("%lld
    ",(ans1+ans2)%MOD);
    64     }
    65     return 0;
    66 }
    View Code
  • 相关阅读:
    Oracle数据库——半期测验
    Oracle数据库——SQL高级查询
    mysql中整数类型后面的数字,是不是指定这个字段的长度?比如int(11),11代表11个字节吗?
    ehcache memcache redis 三大缓存男高音
    Java Redis Pipeline 使用示例
    游族网络:我们是怎么玩转千台以上游戏云服务器的
    java 在Excel中插入图片 POI实现
    解放运维的双手,谈自动化运维管理平台设计
    运维堡垒机
    查询相应的key
  • 原文地址:https://www.cnblogs.com/sdau--codeants/p/3446454.html
Copyright © 2011-2022 走看看