问题描述
这几天在用TensorFlow搭建一个神经网络来做一个binary classifier,搭建一个典型的神经网络的基本思路是:
- 定义神经网络的layers(层)以及初始化每一层的参数
- 然后迭代:
- 前向传播(Forward propagation)
- 计算cost(Compute cost)
- 反向传播(Backward propagation)
- 更新参数(Update parameters)
- 使用训练好的参数去做预测
在训练的时候发现了一个很奇怪的现象:每一次迭代所有的cost都为0。一开始以为是参数初始化出了问题,花了好多时间在上面。后来仔细研究了一下发现是最后一层的输出函数用错了,我用的是tf.nn.softmax_cross_entropy_with_logits
来计算cost。 我们知道softmax一般是用来做multiclass classifier的,也就是输出的类别要大于两个。对于一个binary classifier而言,很明显我们要用sigmoid函数也就是tf.nn.sigmoid_cross_entropy_with_logits
来计算cost,于是问题解决。
为什么?
那么为什么在binary classifier中使用了softmax之后cost就一直是0呢?我们先来看一下softmax的公式:
s(z)j=ezj∑Kk=1ezks(z)j=ezj∑k=1Kezk
- binary classifier的output是一维的(one-dimension 0/1),那么如果只有一个元素,那么s(z)就永远等于1,不管z的值是多少。
- 恒定输出1之后,我们结合交叉熵的计算公式可知:
- 如果true label是0,那么
-0*log(1) = 0
- 如果true label是1,那么
-1*log(1) = 0
- 如果true label是0,那么
Tensorflow函数:tf.nn.softmax_cross_entropy_with_logits 讲解
首先把Tensorflow英文API搬过来:
tf.nn.softmax_cross_entropy_with_logits(_sentinel=None, labels=None, logits=None, dim=-1, name=None)
Computes softmax cross entropy between logits
and labels
.
Measures the probability error in discrete classification tasks in which the classes are mutually exclusive (each entry is in exactly one class). For example, each CIFAR-10 image is labeled with one and only one label: an image can be a dog or a truck, but not both.
NOTE: While the classes are mutually exclusive, their probabilities need not be. All that is required is that each row oflabels
is a valid probability distribution. If they are not, the computation of the gradient will be incorrect.
If using exclusive labels
(wherein one and only one class is true at a time), seesparse_softmax_cross_entropy_with_logits
.
WARNING: This op expects unscaled logits, since it performs a softmax
on logits
internally for efficiency. Do not call this op with the output of softmax
, as it will produce incorrect results.
logits
and labels
must have the same shape [batch_size, num_classes]
and the same dtype (either float16
,float32
, or float64
).
Note that to avoid confusion, it is required to pass only named arguments to this function.
Args:
_sentinel
: Used to prevent positional parameters. Internal, do not use.labels
: Each rowlabels[i]
must be a valid probability distribution.logits
: Unscaled log probabilities.dim
: The class dimension. Defaulted to -1 which is the last dimension.name
: A name for the operation (optional).
labels:为神经网络期望的输出
logits:为神经网络最后一层的输出
警告:这个函数内部自动计算softmax,然后再计算交叉熵代价函数,也就是说logits必须是没有经过tf.nn.softmax函数处理的数据,否则导致训练结果有问题。建议编程序时使用这个函数,而不必自己编写交叉熵代价函数。
下面是两层CNN识别mnist的softmax回归实验:
- #coding=utf-8
- import tensorflow as tf
- from tensorflow.examples.tutorials.mnist import input_data
- mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
- def compute_accuracy(v_xs,v_ys):
- global prediction
- y_pre=sess.run(prediction,feed_dict={xs:v_xs,keep_prob:1}) #这里的keep_prob是保留概率,即我们要保留的RELU的结果所占比例
- correct_prediction=tf.equal(tf.argmax(y_pre,1),tf.argmax(v_ys,1))
- accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
- result=sess.run(accuracy,feed_dict={xs:v_xs,ys:v_ys,keep_prob:1})
- return result
- def weight_variable(shape):
- inital=tf.truncated_normal(shape,stddev=0.1) #stddev爲標準差
- return tf.Variable(inital)
- def bias_variable(shape):
- inital=tf.constant(0.1,shape=shape)
- return tf.Variable(inital)
- def conv2d(x,W): #x爲像素值,W爲權值
- #strides[1,x_movement,y_movement,1]
- #must have strides[0]=strides[3]=1
- #padding=????
- return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')#
- def max_pool_2x2(x):
- # strides[1,x_movement,y_movement,1]
- return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')#ksize二三维为池化窗口
- #define placeholder for inputs to network
- xs=tf.placeholder(tf.float32,[None,784])/255
- ys=tf.placeholder(tf.float32,[None,10])
- keep_prob=tf.placeholder(tf.float32)
- x_image=tf.reshape(xs, [-1,28,28,1]) #-1为这个维度不确定,变成一个4维的矩阵,最后为最里面的维数
- #print x_image.shape #最后这个1理解为输入的channel,因为为黑白色所以为1
- ##conv1 layer##
- W_conv1=weight_variable([5,5,1,32]) #patch 5x5,in size 1 是image的厚度,outsize 32 是提取的特征的维数
- b_conv1=bias_variable([32])
- h_conv1=tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1)# output size 28x28x32 因为padding='SAME'
- h_pool1=max_pool_2x2(h_conv1) #output size 14x14x32
- ##conv2 layer##
- W_conv2=weight_variable([5,5,32,64]) #patch 5x5,in size 32 是conv1的厚度,outsize 64 是提取的特征的维数
- b_conv2=bias_variable([64])
- h_conv2=tf.nn.relu(conv2d(h_pool1,W_conv2)+b_conv2)# output size 14x14x64 因为padding='SAME'
- h_pool2=max_pool_2x2(h_conv2) #output size 7x7x64
- ##func1 layer##
- W_fc1=weight_variable([7*7*64,1024])
- b_fc1=bias_variable([1024])
- #[n_samples,7,7,64]->>[n_samples,7*7*64]
- h_pool2_flat=tf.reshape(h_pool2,[-1,7*7*64])
- h_fc1=tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1)
- h_fc1_drop=tf.nn.dropout(h_fc1,keep_prob) #防止过拟合
- ##func2 layer##
- W_fc2=weight_variable([1024,10])
- b_fc2=bias_variable([10])
- #prediction=tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2)
- prediction=tf.matmul(h_fc1_drop,W_fc2)+b_fc2
- #h_fc1_drop=tf.nn.dropout(h_fc1,keep_prob) #防止过拟合
- #the errro between prediction and real data
- #cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys*tf.log(prediction),reduction_indices=[1]))
- cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=ys, logits=prediction)
- train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
- sess=tf.Session()
- sess.run(tf.global_variables_initializer())
- for i in range(1000):
- batch_xs,batch_ys=mnist.train.next_batch(100)
- sess.run(train_step,feed_dict={xs:batch_xs,ys:batch_ys,keep_prob:0.5})
- if i%50 ==0:
- accuracy = 0
- for j in range(10):
- test_batch = mnist.test.next_batch(1000)
- acc_forone=compute_accuracy(test_batch[0], test_batch[1])
- #print 'once=%f' %(acc_forone)
- accuracy=acc_forone+accuracy
- print '测试结果:batch:%g,准确率:%f' %(i,accuracy/10)
实验结果为:
- 测试结果:batch:0,准确率:0.090000
- 测试结果:batch:50,准确率:0.788600
- 测试结果:batch:100,准确率:0.880200
- 测试结果:batch:150,准确率:0.904600
- 测试结果:batch:200,准确率:0.927500
- 测试结果:batch:250,准确率:0.929800
- 测试结果:batch:300,准确率:0.939600
- 测试结果:batch:350,准确率:0.942100
- 测试结果:batch:400,准确率:0.950600
- 测试结果:batch:450,准确率:0.950700
- 测试结果:batch:500,准确率:0.956700
- 测试结果:batch:550,准确率:0.956000
- 测试结果:batch:600,准确率:0.957100
- 测试结果:batch:650,准确率:0.958400
- 测试结果:batch:700,准确率:0.961500
- 测试结果:batch:750,准确率:0.963800
- 测试结果:batch:800,准确率:0.965000
- 测试结果:batch:850,准确率:0.966300
- 测试结果:batch:900,准确率:0.967800
- 测试结果:batch:950,准确率:0.967700
迭代次数没有太多,否则准确率还会提高。