zoukankan      html  css  js  c++  java
  • CF893E Counting Arrays

    对于每组数据,给出x和y,求一个长度为y的序列,其乘积为x,允许有负数,求这种序列的个数,对1e9+7取模


    首先不考虑正负号,那么我们可以把原题看作把(x)的质因子分配到序列的若干个位置中,那么设(x=prod_ip_i^{k_i}),则对于每个(p_i),都有把(k_i)个小球放到(y)个有标号盒子中,并且盒子可以为空,相当于有(k_i+y)个小球放到(y)个有标号盒子中,每个盒子不能为空,于是用插板法解决,方案数为(egin{pmatrix}k_i+y-1\y-1end{pmatrix})

    然后考虑正负号的问题,我们肯定是每次选择序列中偶数个位置,把他们变为负数,所以有如下式子:

    [sum_{i=0}^{lfloorfrac{y}{2} floor}egin{pmatrix}y\2iend{pmatrix} ]

    考虑化简这个式子,那么先考虑(y)是奇数,那么有:

    [egin{aligned}sum_{i=0}^{frac{y-1}{2}}egin{pmatrix}y\2iend{pmatrix}\ =sum_{i=0}^frac{y-1}{2}egin{pmatrix}y\iend{pmatrix}end{aligned}]

    而我们发现(2^y=sum_{i=0}^yegin{pmatrix}y\iend{pmatrix},egin{pmatrix}y\iend{pmatrix}=egin{pmatrix}y\y-iend{pmatrix}),那么原式就(=2^{y-1})

    然后考虑(y)是偶数,那么有:

    [sum_{i=0}^{frac{y}{2}}egin{pmatrix}y\2iend{pmatrix} ]

    然后如果(frac{y}{2})是奇数,那么有:

    [egin{aligned}2sum_{i=0}^{frac{frac{y}{2}-1}{2}}egin{pmatrix}y\2iend{pmatrix}\=2sum_{i=0}^{frac{y}{2}-1}egin{pmatrix}y-1\iend{pmatrix}end{aligned}\=2(2^{y-2})=2^{y-2} ]

    而如果(frac{y}{2})是偶数,那么有:

    [egin{aligned}2sum_{i=0}^{frac{frac{y}{2}-2}{2}}egin{pmatrix}y\2iend{pmatrix}end{aligned}+egin{pmatrix}y\frac{y}{2}end{pmatrix}\=2sum_{i=0}^{frac{y}{2}-2}egin{pmatrix}y-1\iend{pmatrix}+egin{pmatrix}y\frac{y}{2}end{pmatrix}\=2(2^{y-2}-egin{pmatrix}y-1\frac{y}{2}-1end{pmatrix})+egin{pmatrix}y-1\frac{y}{2}end{pmatrix}+egin{pmatrix}y-1\frac{y}{2}-1end{pmatrix}\=2^{y-1}+egin{pmatrix}y-1\frac{y}{2}end{pmatrix}-egin{pmatrix}y-1\frac{y}{2}-1end{pmatrix}\=2^{y-1} ]

    综上所述可以得到(sum_{i=0}^{lfloorfrac{y}{2} floor}egin{pmatrix}y\2iend{pmatrix}=2^{y-1})

    Code

    #include <iostream>
    #include <cstdio>
    #include <algorithm>
    #include <cstring>
    const int N = 2e6;
    const int p = 1e9 + 7;
    using namespace std;
    int T,x,y,fac[N + 5],inv[N + 5],ans;
    int mypow(int a,int x){int s = 1;for (;x;x & 1 ? s = 1ll * s * a % p : 0,a = 1ll * a * a % p,x >>= 1);return s;}
    int C(int n,int m)
    {
        return 1ll * fac[n] * inv[n - m] % p * inv[m] % p;
    }
    int main()
    {
        scanf("%d",&T);
        fac[0] = 1;
        for (int i = 1;i <= N;i++)
            fac[i] = 1ll * fac[i - 1] * i % p;
        inv[1] = 1;
        for (int i = 2;i <= N;i++)
            inv[i] = 1ll * (p - p / i) * inv[p % i] % p;
        inv[0] = 1;
        for (int i = 1;i <= N;i++)
            inv[i] = 1ll * inv[i - 1] * inv[i] % p;
        while (T--)
        {
            scanf("%d%d",&x,&y);
            ans = mypow(2,y - 1);
            int xx = x;
            for (int i = 2;i * i <= xx;i++)
                if (xx % i == 0)
                {
                    int cnt = 0;
                    while (xx % i == 0)
                    {
                        xx /= i;
                        cnt++;
                    }
                    ans = 1ll * ans * C(cnt + y - 1,y - 1) % p;
                }
            if (xx != 1)
                ans = 1ll * ans * y % p;
            printf("%d
    ",ans);
        }
        return 0;
    }
    
  • 相关阅读:
    10.16作业
    day0402作业
    day04作业
    10.13作业
    JVM原理最全、清晰、通俗讲解
    Java的SimpleDateFormat,DateTimeFormatter:YYYY与yyyy
    从源码层面理解 ArrayList 扩容策略
    哈夫曼树
    面向对象三大基本特性,五大基本原则
    数据结构
  • 原文地址:https://www.cnblogs.com/sdlang/p/13995389.html
Copyright © 2011-2022 走看看