zoukankan      html  css  js  c++  java
  • 转caffe scale layer

    版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
    本文链接:https://blog.csdn.net/u011681952/article/details/86157481

    Scale Layer是输入进行缩放和平移,常常出现在BatchNorm归一化后,Caffe中常用BatchNorm+Scale实现归一化操作(等同Pytorch中BatchNorm)

    首先我们先看一下 ScaleParameter

    message ScaleParameter {
    	  // The first axis of bottom[0] (the first input Blob) along which to apply
    	  // bottom[1] (the second input Blob).  May be negative to index from the end
    	  // (e.g., -1 for the last axis).
    	  // 根据 bottom[0] 指定 bottom[1] 的形状
    	  // For example, if bottom[0] is 4D with shape 100x3x40x60, the output
    	  // top[0] will have the same shape, and bottom[1] may have any of the
    	  // following shapes (for the given value of axis):
    	  //    (axis == 0 == -4) 100; 100x3; 100x3x40; 100x3x40x60
    	  //    (axis == 1 == -3)          3;     3x40;     3x40x60
    	  //    (axis == 2 == -2)                   40;       40x60
    	  //    (axis == 3 == -1)                                60
    	  // Furthermore, bottom[1] may have the empty shape (regardless of the value of
    	  // "axis") -- a scalar multiplier.
    	  // 例如,如果 bottom[0] 的 shape 为 100x3x40x60,则 top[0] 输出相同的 shape;
    	  // bottom[1] 可以包含上面 shapes 中的任一种(对于给定 axis 值). 
    	  // 而且,bottom[1] 可以是 empty shape 的,没有任何的 axis 值,只是一个标量的乘子.
    	  optional int32 axis = 1 [default = 1];
    
      // (num_axes is ignored unless just one bottom is given and the scale is
      // a learned parameter of the layer.  Otherwise, num_axes is determined by the
      // number of axes by the second bottom.)
      // (忽略 num_axes 参数,除非只给定一个 bottom 及 scale 是网络层的一个学习到的参数. 
      // 否则,num_axes 是由第二个 bottom 的数量来决定的.)
      // The number of axes of the input (bottom[0]) covered by the scale
      // parameter, or -1 to cover all axes of bottom[0] starting from `axis`.
      // Set num_axes := 0, to multiply with a zero-axis Blob: a scalar.
      // bottom[0] 的 num_axes 是由 scale 参数覆盖的;
      optional int32 num_axes = 2 [default = 1];
    
      // (filler is ignored unless just one bottom is given and the scale is
      // a learned parameter of the layer.)
      // (忽略 filler 参数,除非只给定一个 bottom 及 scale 是网络层的一个学习到的参数.
      // The initialization for the learned scale parameter.
      // scale 参数学习的初始化
      // Default is the unit (1) initialization, resulting in the ScaleLayer
      // initially performing the identity operation.
      // 默认是单位初始化,使 Scale 层初始进行单位操作.
      optional FillerParameter filler = 3;
    
      // Whether to also learn a bias (equivalent to a ScaleLayer+BiasLayer, but
      // may be more efficient).  Initialized with bias_filler (defaults to 0).
      // 是否学习 bias,等价于 ScaleLayer+BiasLayer,只不过效率更高
      // 采用 bias_filler 进行初始化. 默认为 0.
      optional bool bias_term = 4 [default = false];
      optional FillerParameter bias_filler = 5;
    

    }

    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47

    Scale layer 在prototxt里面的书写:

    layer {
     	 name: "scale_conv1"
         type: "Scale"
    	 bottom: "conv1"
         top: "conv1"
    
     scale_param {
        bias_term: true
    

    }

    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9

    例如在MobileNet中:

    layer {
    	  name: "conv6_4/scale"
    	  type: "Scale"
    	  bottom: "conv6_4/bn"
    	  top: "conv6_4/bn"
    	  param {
    	    lr_mult: 1
    	    decay_mult: 0
    	  }
    	  param {
    	    lr_mult: 1
    	    decay_mult: 0
    	  }
    	  scale_param {
    	    bias_term: true
    	  }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
                                    </div>
                <link href="https://csdnimg.cn/release/phoenix/mdeditor/markdown_views-095d4a0b23.css" rel="stylesheet">
                    </div>
  • 相关阅读:
    5月18日InterlliJ IDea快捷键
    5月17日-集合构架Collection学习
    十一java作业1
    十一java作业2
    第一周,java模拟ATMdos界面程序源代码及感想
    8.27-9.2第八周
    8.20-8.26第七周
    8.13-8.19第六周
    8.6-8.12第五周
    7.30-8.5第四周
  • 原文地址:https://www.cnblogs.com/sdu20112013/p/11579739.html
Copyright © 2011-2022 走看看