python开发,有时候需要设计单例模式保证操作的唯一性和安全性。理论上python语言底层实现和C/C++不同,python采取的是引用模式,当一个对象是可变对象,对其修改不会更改引用的指向,当一个对象是不可修改对象,对其修改会改变引用指向。
可变对象和不可变对象
不可变对象
该对象所指向的内存中的值不能被改变。当改变某个变量时候,由于其所指的值不能被改变,相当于把原来的值复制一份后再改变,这会开辟一个新的地址,变量再指向这个新的地址。
可变对象
该对象所指向的内存中的值可以被改变。变量(准确的说是引用)改变后,实际上是其所指的值直接发生改变,并没有发生复制行为,也没有开辟新的出地址,通俗点说就是原地改变。
python 中的可变对象和不可变对象
Python中,数值类型(int和float)、字符串str、元组tuple都是不可变类型。
而列表list、字典dict、集合set,以及开发人员自己定义的类是可变类型
python 和C/C++ 内存分配差异
a = 2 b = 2 c = a + 0 c += 0 print(id(a), id(b), id(2)) # id都相同 print(c is b) #True
python 中变量a,b,c都是常量2的引用,所以他们的地址空间都相同。在C/C++中,a,b,c是三个变量,每个变量地址都不一样,这一点大家在学习语言时要注意,这算是python的特性吧。同样的道理,字符串也是一样的
astr = 'good' bstr = 'good' cstr = astr + '' print(cstr is bstr) # True print(id(astr), id(bstr), id('good')) # 三个id相同
字符串也是不可变对象,所以astr,bstr,cstr指向的都’good’所在空间
如果修改astr,则astr指向改变了
astr = 'good' print(id(astr)) astr += 'aa' print(id(astr)) # id和上面的不一样
因为str是不可变对象,当修改它的值后变为’goodaa’,那么astr指向的地址也改变为’goodaa’所在地址。id(astr)和之前的不一样了。
lis = [1, 2, 3] lis2 = [1, 2, 3] # 虽然它们的内容一样,但是它们指向的是不同的内存地址 print(lis is lis2) print(id(lis), id(lis2), id([1, 2, 3])) # 三个id都不同
虽然lis和lis2内容一样,但是可变对象都会单独开辟空间,所以上边三个id打印结果都不一样。
alist = [1, 2, 3] # alist实际上是对对象的引用,blist = alist即引用的传递,现在两个引用都指向了同一个对象(地址) blist = alist print(id(alist), id(blist)) # id一样 # 所以其中一个变化,会影响到另外一个 blist.append(4) print(alist) # 改变blist, alist也变成了[1 ,2 ,3 4] print(id(alist), id(blist)) # id一样,和上面值没有改变时候的id也一样
blist赋值为alist,这两个指向同一个地址,当修改blist时,alist也改变了,所以打印两个id都是一样的。一般我们自己定义的类也是可变对象,我们想做的是通过设计一个单例类实现统一的控制,这样便于管理,比如网络模块,比如数据库处理模块等等。下面浅谈三种单例模式设计
python 单例模式设计
方法一:使用装饰器
装饰器维护一个字典对象instances,缓存了所有单例类,只要单例不存在则创建,已经存在直接返回该实例对象。
def singleton(cls): instances = {} def wrapper(*args, **kwargs): if cls not in instances: instances[cls] = cls(*args, **kwargs) return instances[cls] return wrapper @singleton class Foo(object): pass foo1 = Foo() foo2 = Foo() print foo1 is foo2
singleton函数中定义了instances字典,当使用它作为装饰器装饰Foo后instances也会被缓存在闭包环境中,第一次使用Foo()后,instances就回被设置为instances[Foo]=Foo(),这样根据类名就可以区分是否被初始化过,从而实现单例模式
方法二:使用基类
new是真正创建实例对象的方法,所以重写基类的new方法,以此来保证创建对象的时候只生成一个实例
class Singleton(object): def __new__(cls, *args, **kwargs): if not hasattr(cls, '_instance'): cls._instance = super(Singleton, cls).__new__(cls, *args, **kwargs) return cls._instance class Foo(Singleton): pass foo1 = Foo() foo2 = Foo() print foo1 is foo2 # True
new在一个类构造实例对象时会调用,所以通过判断hasattr,是否含有某个属性,即可实现单例模式。
super(Singleton,cls)调用的是Singleton的基类。我目前用的是这种方式实现的单例,用作网络和数据库管理。
方法三:使用元类
元类(参考:深刻理解Python中的元类)是用于创建类对象的类,类对象创建实例对象时一定会调用call方法,因此在调用call时候保证始终只创建一个实例即可,type是python中的一个元类
class Singleton(type): def __call__(cls, *args, **kwargs): if not hasattr(cls, '_instance'): cls._instance = super(Singleton, cls).__call__(*args, **kwargs) return cls._instance class Foo(object): __metaclass__ = Singleton foo1 = Foo() foo2 = Foo() print foo1 is foo2 # True
这种方式和new类似,都是通过系统级的函数call进行控制。通过在类中设置元类从而实现单例控制。
到目前为止,单例模式介绍完毕,感谢关注我的公众号