zoukankan      html  css  js  c++  java
  • yarn上运行flink环境搭建

    主要完成hadoop集群搭建和yarn上运行flink

    1.搭建hadoop伪集群

    主要是搭建hadoop MapReduce(yarn)和HDFS

    1.1 下载&配置环境变量

    这里下载的hadoop二进制包为 2.7.7,下载后解压到本地,假设是/usr/hadoop/hadoop-2.7.7

    
    #HADOOP VARIABLES START
    export HADOOP_INSTALL=/usr/hadoop/hadoop-2.7.7
    export HADOOP_HOME=$HADOOP_INSTALL
    export PATH=$PATH:$HADOOP_INSTALL/bin
    export PATH=$PATH:$HADOOP_INSTALL/sbin
    export HADOOP_MAPRED_HOME=$HADOOP_INSTALL
    export HADOOP_COMMON_HOME=$HADOOP_INSTALL
    export HADOOP_HDFS_HOME=$HADOOP_INSTALL
    export YARN_HOME=$HADOOP_INSTALL
    export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_INSTALL/lib/native
    export HADOOP_OPTS="-Djava.library.path=$HADOOP_INSTALL/lib"
    #HADOOP VARIABLES END
    

    1.2 设置ssh

    运行命令

    ssh localhost

    如果出现 “Warning: Permanently added 'localhost' (ECDSA) to the list of known hosts.” 类似的错误则需要做如下配置

    $ ssh-keygen -t rsa -P '' -f ~/.ssh/id_rsa # 如果已经生成了公私钥对则跳过改步骤

    $ cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

    $ chmod 0600 ~/.ssh/authorized_keys

    1.3 配置hdfs

    cd hadoop-2.7.7

    vim etc/hadoop/core-site.xml

    修改core-site.xml文件内容为

    <configuration>
        <property>
            <name>hadoop.tmp.dir</name>
            <value>file:/usr/hadoop/hadoop-2.7.2/tmp</value>
            <description>Abase for other temporary directories.</description>
        </property>
        <property>
            <name>fs.defaultFS</name>
            <value>hdfs://localhost:9000</value>
        </property>
    </configuration>
    

    vim etc/hadoop/hdfs-site.xml

    修改hdfs-site.xml内容为

    <configuration>
        <property>
            <name>dfs.replication</name>
            <value>1</value>
        </property>
        <property>
            <name>dfs.namenode.name.dir</name>
            <value>file:/usr/hadoop/hadoop-2.7.2/tmp/dfs/name</value>
        </property>
        <property>
            <name>dfs.datanode.data.dir</name>
            <value>file:/usr/hadoop/hadoop-2.7.2/tmp/dfs/data</value>
        </property>
    </configuration>
    

    注意: 官网的配置只配置了fs.defaultFS和dfs.replication,这样便可以启动起来,但是若没有配置hadoop.tmp.dir参数,则默认使用的临时目录为 /tmp/hadoo-hadoop,而这个目录在重启时有可能被系统清理掉,导致必须重新执行format才行。

    vim etc/hadoop/hadoop-env.sh

    需要显示的声明JAVA_HOME, 即使环境变量里已经有了JAVA_HOME。否则会报错:JAVA_HOME is not set and could not be found

        ## 修改此处为jdk的home目录
        export JAVA_HOME=/opt/jdk/jdk1.8
    

    1.4 格式化和启动hdfs

    $ bin/hdfs namenode -format

    $ sbin/start-dfs.sh

    成功启动后可以通过 http://localhost:50070/ 访问hdfs web页面。使用jps查看进程可以看到DataNode、NameNode、SecondaryNameNode 三个进程,如果没有看到NameNode,可以排除下是不是端口有冲突,然后修复core-site.xml中fs.defaultFS配置的端口号重试下。

    1.4 配置yarn

    vim etc/hadoop/mapred-site.xml

    <configuration>
        <property>
            <name>mapreduce.framework.name</name>
            <value>yarn</value>
        </property>
    </configuration>
    

    vim etc/hadoop/yarn-site.xml

    <configuration>
        <property>
            <name>yarn.nodemanager.aux-services</name>
            <value>mapreduce_shuffle</value>
        </property>
    </configuration>
    

    启动yarn

    $ sbin/start-yarn.sh

    启动后可以通过 http://localhost:8088/ 访问ResourceManager

    到此hadoop伪集群已经搭建完毕

    flink要下载和hadoop版本对应的flink版本,否则会出现错误, 这里我们下载 Apache Flink 1.7.2 with Hadoop® 2.7 for Scala 2.11。下载后解压为flink-1.7.2。直接运行如下命令即可:

    $ flink-1.7.2/bin/flink run -m yarn-cluster -yn 2 ../my-flink-project-0.1.jar

    其中yarn-cluster表示在yarn上运行flink集群, my-flink-project-0.1.jar是自己写的flink程序。

    提交后可以通过ResourceManager http://localhost:8088/ 查看yarn任务运行.

    3 参考

    1. http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html
    2. https://blog.csdn.net/Evankaka/article/details/51612437
  • 相关阅读:
    003random随机数模块
    002---time & datetime
    001---包和模块
    000软件开发规范
    python函数篇
    LeetCode OJ:Construct Binary Tree from Preorder and Inorder Traversal(从前序以及中序遍历结果中构造二叉树)
    LeetCode OJ:Flatten Binary Tree to Linked List(捋平二叉树)
    LeetCode OJ:Convert Sorted Array to Binary Search Tree(将排序好的数组转换成二叉搜索树)
    LeetCode OJ:Count Complete Tree Nodes(完全二叉树的节点数目)
    LeetCode OJ:Validate Binary Search Tree(合法的二叉搜索树)
  • 原文地址:https://www.cnblogs.com/set-cookie/p/10851697.html
Copyright © 2011-2022 走看看