责任链模式:一个窗口一个窗口地传话,一直传到食堂,食堂一看不妙,赶快做好送过去。
中介者模式:专门派一个人负责传话,任何窗口没菜了,就要这个人赶快去厨房催。
观察者模式:厨房那边派一个盯着,看哪个窗口没菜了就开始大声嚷嚷。
举例:之所以要把这三个设计模式放在一块儿,是因为我在我的站里面结合这三者建立了一个好玩的东西,可以说是我的网站的核心所在。它解决了我的flash里面各个mc的通信问题。
比如,影片A放完了,要通知影片B开始播放,直接的做法是在A的最后一帧,写从A到B的相对路径或B的绝对路径,让B play()。这样做A和B的耦合性是相当高的,也就是说,相互依赖程度太高。运用设计模式的解决方案如下:
//MessageMap.as
//消息映射类
class MessageMap extends Object {
var Message:String;
var MessageWatcher:Function;
var Target;
var MessageList:Array;
var Num_Msg:Number;
function MessageMap() {
Num_Msg = 0;
MessageList = new Array();
Message = "HANG_UP";
MessageWatcher = function (prop, oldVar, newVar, Param) {
for (var i = 0; i<Num_Msg+1; i++) {
if (newVar == MessageList[i][0]) {
MessageList[i][1].apply(MessageList[i][3], MessageList[i][2]);
if (!MessageList[i][4]) {
MessageList.splice(i, 1);
Num_Msg--;
i-=1;
}
}
}
};
his.watch("Message", MessageWatcher, "test");
}
function SendMessage(Msg:String, mc:MovieClip) {
Message = Msg;
}
function UpdateMessageMap(Msg:String, objFunction:Function, ArrayParam:Array, objRefer,IsMultiUsed:Boolean) {
MessageList[Num_Msg] = new Array();
MessageList[Num_Msg][0] = new String();
MessageList[Num_Msg][0] = Msg;
MessageList[Num_Msg][1] = new Function();
MessageList[Num_Msg][1] = objFunction;
MessageList[Num_Msg][2] = new Array();
MessageList[Num_Msg][2] = ArrayParam;
MessageList[Num_Msg][3] = objRefer;
MessageList[Num_Msg][4] = IsMultiUsed;
Num_Msg++;
}
function DeleteMessageMap(objRefer) {
for (var i = 0; i<Num_Msg; i++) {
if (MessageList[i][2] == objRefer) {
MessageList.splice(i, 1);
Num_Msg--;
}
}
}
}
class SubTemplateMovie extends BaseMovie {
var MovieRemoveFunction:Function;
function SubTemplateMovie() {
this.stop();
MovieStartFunction = function () {
Lock();
this.play();
};
MovieEndFunction = function () {
Lock();
this.play();
};
MovieRemoveFunction = function () {
this.stop();
SendMsg("SUB_TEMPLATE_REMOVED", this);
_parent.unloadMovie();
};
MovieMainFunction = function () {
stop();
SendMsg("SUB_TEMPLATE_OPEN", this);
};
UpdateMessage("LOADING_BAR_OVER", MovieStartFunction, null, this, false);
UpdateMessage("BACK_TO_INDEX", MovieEndFunction, null, this, false);
}
}
//消息映射类
class MessageMap extends Object {
var Message:String;
var MessageWatcher:Function;
var Target;
var MessageList:Array;
var Num_Msg:Number;
function MessageMap() {
Num_Msg = 0;
MessageList = new Array();
Message = "HANG_UP";
MessageWatcher = function (prop, oldVar, newVar, Param) {
for (var i = 0; i<Num_Msg+1; i++) {
if (newVar == MessageList[i][0]) {
MessageList[i][1].apply(MessageList[i][3], MessageList[i][2]);
if (!MessageList[i][4]) {
MessageList.splice(i, 1);
Num_Msg--;
i-=1;
}
}
}
};
his.watch("Message", MessageWatcher, "test");
}
function SendMessage(Msg:String, mc:MovieClip) {
Message = Msg;
}
function UpdateMessageMap(Msg:String, objFunction:Function, ArrayParam:Array, objRefer,IsMultiUsed:Boolean) {
MessageList[Num_Msg] = new Array();
MessageList[Num_Msg][0] = new String();
MessageList[Num_Msg][0] = Msg;
MessageList[Num_Msg][1] = new Function();
MessageList[Num_Msg][1] = objFunction;
MessageList[Num_Msg][2] = new Array();
MessageList[Num_Msg][2] = ArrayParam;
MessageList[Num_Msg][3] = objRefer;
MessageList[Num_Msg][4] = IsMultiUsed;
Num_Msg++;
}
function DeleteMessageMap(objRefer) {
for (var i = 0; i<Num_Msg; i++) {
if (MessageList[i][2] == objRefer) {
MessageList.splice(i, 1);
Num_Msg--;
}
}
}
}
class SubTemplateMovie extends BaseMovie {
var MovieRemoveFunction:Function;
function SubTemplateMovie() {
this.stop();
MovieStartFunction = function () {
Lock();
this.play();
};
MovieEndFunction = function () {
Lock();
this.play();
};
MovieRemoveFunction = function () {
this.stop();
SendMsg("SUB_TEMPLATE_REMOVED", this);
_parent.unloadMovie();
};
MovieMainFunction = function () {
stop();
SendMsg("SUB_TEMPLATE_OPEN", this);
};
UpdateMessage("LOADING_BAR_OVER", MovieStartFunction, null, this, false);
UpdateMessage("BACK_TO_INDEX", MovieEndFunction, null, this, false);
}
}
大概机制就是,影片提前提交一个数据结构,声明,如果有影片提交这条消息,就执行这条函数。原理在于,发送消息,实际上是把消息映射的一个变量赋值,由于消息映射继承自object类,可以用watch方法对该变量进行监视,一旦改变,在已经提交上来的消息映射列表里检查,如果有,执行对应函数。实际上这也造成了一定程度的耦合性,但是我们已经成功地把耦合性控制在了下级类,上级子类完全不用理会这一套消息机制的实现过程。
这个机制可以让我们对oop的真正目的有更深的看法。举例说明,影片A播放完了,就声明自己播放完了,至于我播完了你要干什么,不是我的事,我不控制你。所谓的降低耦合度是个相对概念,别忘了在计算机最底层,耦合度还是一样,cpu总是不断的直接或间接寻址,但我们需要做的是,改变系统的拓扑结构,把耦合度控制在某一个范围之内。
整个消息映射类相当于一个中介者,内部生成一个观察器,一旦触发消息,以责任链的方式执行。