题目如下:
Given an array
A
of integers, returntrue
if and only if we can partition the array into three non-emptyparts with equal sums.Formally, we can partition the array if we can find indexes
i+1 < j
with(A[0] + A[1] + ... + A[i] == A[i+1] + A[i+2] + ... + A[j-1] == A[j] + A[j-1] + ... + A[A.length - 1])
Example 1:
Input: [0,2,1,-6,6,-7,9,1,2,0,1] Output: true Explanation: 0 + 2 + 1 = -6 + 6 - 7 + 9 + 1 = 2 + 0 + 1
Example 2:
Input: [0,2,1,-6,6,7,9,-1,2,0,1] Output: false
Example 3:
Input: [3,3,6,5,-2,2,5,1,-9,4] Output: true Explanation: 3 + 3 = 6 = 5 - 2 + 2 + 5 + 1 - 9 + 4
Note:
3 <= A.length <= 50000
-10000 <= A[i] <= 10000
解题思路:要使得Input能均分成三段,那么Input所有元素的和一定是3的倍数,这里记为3X。假设下标i和j为第一段和第二段的终点,那么有sum(Input[0:i]) = X,sum(Input[0:j]) = 2X。所以只需要用字典记录整个Input从下标0开始到结束每一段的和,判断和是否能被3整除,以及X和2X是否存在并且X出现在2X之前即可。
代码如下:
class Solution(object): def canThreePartsEqualSum(self, A): """ :type A: List[int] :rtype: bool """ dic = {} total = 0 for i,v in enumerate(A): total += v if total not in dic: dic[total] = [i] elif len(dic[total]) == 1: dic[total] += [i] else: dic[total][-1] = i return total % 3 == 0 and total / 3 in dic and total / 3 * 2 in dic and dic[total/3][0] < dic[total / 3 * 2][-1]