题目如下:
Given an array
A
of positive integers (not necessarily distinct), return the lexicographically largest permutation that is smaller thanA
, that can be made with one swap (A swap exchanges the positions of two numbersA[i]
andA[j]
). If it cannot be done, then return the same array.Example 1:
Input: [3,2,1] Output: [3,1,2] Explanation: Swapping 2 and 1.Example 2:
Input: [1,1,5] Output: [1,1,5] Explanation: This is already the smallest permutation.Example 3:
Input: [1,9,4,6,7] Output: [1,7,4,6,9] Explanation: Swapping 9 and 7.Example 4:
Input: [3,1,1,3] Output: [1,3,1,3] Explanation: Swapping 1 and 3.Note:
1 <= A.length <= 10000
1 <= A[i] <= 10000
解题思路:要找出字典序小于自己的最大值,方法如下:从后往前遍历A,对于任意一个A[i],在[i+1,A.length]区间内找出比自己小的最大值,如果能找到这样的值,则这两个元素交换,交换之后的A即为字典序小于自己的最大值。怎么找出[i+1,A.length]区间内找出比自己小的最大值?可以把区间内所有的值存入有序的数组中,通过二分查找即可。
代码如下:
class Solution(object): def prevPermOpt1(self, A): """ :type A: List[int] :rtype: List[int] """ import bisect dic = {} val_list = [] for i in range(len(A)-1,-1,-1): inx = bisect.bisect_left(val_list,A[i]) inx -= 1 if inx >= 0 and inx < len(val_list): A[i], A[dic[val_list[inx]]] = A[dic[val_list[inx]]], A[i] break if A[i] not in dic: bisect.insort_left(val_list,A[i]) dic[A[i]] = i return A