zoukankan      html  css  js  c++  java
  • 【leetcode】1269. Number of Ways to Stay in the Same Place After Some Steps

    题目如下:

    You have a pointer at index 0 in an array of size arrLen. At each step, you can move 1 position to the left, 1 position to the right in the array or stay in the same place  (The pointer should not be placed outside the array at any time).

    Given two integers steps and arrLen, return the number of ways such that your pointer still at index 0 after exactly steps steps.

    Since the answer may be too large, return it modulo 10^9 + 7.

    Example 1:

    Input: steps = 3, arrLen = 2
    Output: 4
    Explanation: There are 4 differents ways to stay at index 0 after 3 steps.
    Right, Left, Stay
    Stay, Right, Left
    Right, Stay, Left
    Stay, Stay, Stay
    

    Example 2:

    Input: steps = 2, arrLen = 4
    Output: 2
    Explanation: There are 2 differents ways to stay at index 0 after 2 steps
    Right, Left
    Stay, Stay
    

    Example 3:

    Input: steps = 4, arrLen = 2
    Output: 8

    Constraints:

    • 1 <= steps <= 500
    • 1 <= arrLen <= 10^6

    解题思路:记dp[i][j]为移动i次后恰好位于下标j的次数,要使得第i步移动到j,那么第i-1步所处的位置就只能是 [j-1,j,j+1],所以有dp[i][j] = dp[i-1][j-1] + dp[i-1][j] + dp[i-1][j+1] 。

    代码如下:

    class Solution(object):
        def numWays(self, steps, arrLen):
            """
            :type steps: int
            :type arrLen: int
            :rtype: int
            """
            arrLen = min(arrLen,steps)
    
            dp = [[0] * (arrLen) for _ in range(steps+1)]
    
            dp[1][0] = 1
            dp[1][1] = 1
    
            for i in range(1,steps+1):
                for j in range(len(dp[i])):
                    dp[i][j] += dp[i-1][j]
                    if j - 1 >= 0 and j - 1 < len(dp[i]):
                        dp[i][j] += dp[i-1][j-1]
                    if j + 1 < len(dp[i]):
                        dp[i][j] += dp[i-1][j+1]
    
            return dp[-1][0] % (10**9 + 7)
            
  • 相关阅读:
    . net core的发布
    Using Redis Cache for session data storage in ASP.NET Core
    WCF之双工服务
    值得参考的.net core 的博客
    一、获取EF
    limit 基本实现方式
    Session机制详解及分布式中Session共享解决方案
    ASP.NET Core 中的基于角色的授权ASP.NET Core 中的基于角色的授权
    WCF之双工服务
    苹果公司的粉丝转抄
  • 原文地址:https://www.cnblogs.com/seyjs/p/12041899.html
Copyright © 2011-2022 走看看