zoukankan      html  css  js  c++  java
  • 最小二乘估计及证明

    https://blog.csdn.net/qq_31073871/article/details/81067301

    已知变量X和Y为线性关系(这里XY均为nx1的列向量),为了得知X和Y到底具有怎样的线性关系(也即求解X的系数),如果这是一个工程问题,我们解决这一问题的方法就是对X和Y进行采样,获得很多组样本,然后就能求解出系数了,按照线代的理论,系数矩阵为nxn方阵,且秩为n时,方程具有唯一解,如果采样点过多,也即方程的数目多于未知数的数目,则方程组无解,这时只能求出一个近似解,以不同的目的获得的近似解是不同的,如果为了使方程左右两边的误差的平方和最小,而获得的近似解,就是最小二乘解(所谓“二乘”,就是“平方”的意思,最小二乘就是最小平方和)。这个问题的证明在研究生的矩阵分析引论数学课上学过,现在也忘光了,只记得结论表达式了。

    例子:假设变量y是n个变量xi的线性组合,求系数。

    设方程为AX=y,也即

    为了计算出系数a1、a2、···an的值,我们至少需要n次X、Y的采样值,形如:

    这样就能求解出系数a1、a2、···an的值了,如果采样样本不止n个,而是多于n个,也不要紧,虽然会会造成方程组无解,但是可以求出最小二乘解。

    把方程组写成矩阵形式为:

    XA=Y     (式2)

    至此,就求出了所有的系数ai

    -----------------------------------------------------后记---------------------------------------------------------------------

    又翻了电子版课本,把最小二乘的证明过程也贴上来:

    证明过程在《矩阵分析引论》第30页。证明过程需要用到子空间的概念,这一概念的定义在第6页。

     

     最后简单整理一下证明过程:


    ————————————————
    版权声明:本文为CSDN博主「qq_610642」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
    原文链接:https://blog.csdn.net/qq_31073871/article/details/81067301

    参考1:https://blog.csdn.net/lsh_2013/article/details/46697625

  • 相关阅读:
    css word-wrap与word-break区别
    input输入框光标位置问题
    正则表达式(二)- 位置匹配攻略
    正则表达式(一)- 字符匹配攻略
    mac电脑重启nginx报错nginx: [error] invalid PID number "" in "/usr/local/var/run/nginx.pid"
    指定js文件不使用 eslint 语法检查
    管理github/gitlab生成多个ssh key
    前端切图两种方法整理
    梳理:移动端Viewport的知识
    切图 — Photoshop(转载)
  • 原文地址:https://www.cnblogs.com/sggggr/p/12392605.html
Copyright © 2011-2022 走看看