zoukankan      html  css  js  c++  java
  • Python小波分析库Pywavelets的一点使用心得

    # -*- coding: utf-8 -*-  
    import numpy as np
    import math
    import matplotlib.pyplot as plt
    import pandas as pd
    import datetime 
    from scipy import interpolate
    from pandas import DataFrame,Series
    
    import numpy as np  
    import pywt  
    
    data = np.linspace(1, 4, 7)  
    
    # pywt.threshold方法讲解:  
    #               pywt.threshold(data,value,mode ='soft',substitute = 0 )  
    #               data:数据集,value:阈值,mode:比较模式默认soft,substitute:替代值,默认0,float类型  
    
    #data:   [ 1.   1.5  2.   2.5  3.   3.5  4. ]  
    #output:[ 6.   6.   0.   0.5  1.   1.5  2. ]  
    #soft 因为data中1小于2,所以使用6替换,因为data中第二个1.5小于2也被替换,2不小于2所以使用当前值减去2,,2.5大于2,所以2.5-2=0.5.....  
    
    print(pywt.threshold(data, 2, 'soft',6))   
    
    
    #data:   [ 1.   1.5  2.   2.5  3.   3.5  4. ]  
    #hard data中绝对值小于阈值2的替换为6,大于2的不替换  
    print (pywt.threshold(data, 2, 'hard',6))  
    
    
    #data:   [ 1.   1.5  2.   2.5  3.   3.5  4. ]  
    #data中数值小于阈值的替换为6,大于等于的不替换  
    print (pywt.threshold(data, 2, 'greater',6) )
    
    print (data  )
    #data:   [ 1.   1.5  2.   2.5  3.   3.5  4. ]  
    #data中数值大于阈值的,替换为6  
    print (pywt.threshold(data, 2, 'less',6) )
    [6.  6.  0.  0.5 1.  1.5 2. ]
    [6.  6.  2.  2.5 3.  3.5 4. ]
    [6.  6.  2.  2.5 3.  3.5 4. ]
    [1.  1.5 2.  2.5 3.  3.5 4. ]
    [1.  1.5 2.  6.  6.  6.  6. ]
    #!/usr/bin/env python
    # -*- coding: utf-8 -*-
    
    import numpy as np
    import matplotlib.pyplot as plt
    
    import pywt
    import pywt.data
    
    
    ecg = pywt.data.ecg()
    
    data1 = np.concatenate((np.arange(1, 400),
                            np.arange(398, 600),
                            np.arange(601, 1024)))
    x = np.linspace(0.082, 2.128, num=1024)[::-1]
    data2 = np.sin(40 * np.log(x)) * np.sign((np.log(x)))
    
    mode = pywt.Modes.smooth
    
    
    def plot_signal_decomp(data, w, title):
        """Decompose and plot a signal S.
        S = An + Dn + Dn-1 + ... + D1
        """
        w = pywt.Wavelet(w)#选取小波函数
        a = data
        ca = []#近似分量
        cd = []#细节分量
        for i in range(5):
            (a, d) = pywt.dwt(a, w, mode)#进行5阶离散小波变换
            ca.append(a)
            cd.append(d)
    
        rec_a = []
        rec_d = []
    
        for i, coeff in enumerate(ca):
            coeff_list = [coeff, None] + [None] * i
            rec_a.append(pywt.waverec(coeff_list, w))#重构
    
        for i, coeff in enumerate(cd):
            coeff_list = [None, coeff] + [None] * i
            if i ==3:
                print(len(coeff))
                print(len(coeff_list))
            rec_d.append(pywt.waverec(coeff_list, w))
    
        fig = plt.figure()
        ax_main = fig.add_subplot(len(rec_a) + 1, 1, 1)
        ax_main.set_title(title)
        ax_main.plot(data)
        ax_main.set_xlim(0, len(data) - 1)
    
        for i, y in enumerate(rec_a):
            ax = fig.add_subplot(len(rec_a) + 1, 2, 3 + i * 2)
            ax.plot(y, 'r')
            ax.set_xlim(0, len(y) - 1)
            ax.set_ylabel("A%d" % (i + 1))
    
        for i, y in enumerate(rec_d):
            ax = fig.add_subplot(len(rec_d) + 1, 2, 4 + i * 2)
            ax.plot(y, 'g')
            ax.set_xlim(0, len(y) - 1)
            ax.set_ylabel("D%d" % (i + 1))
    
    
    #plot_signal_decomp(data1, 'coif5', "DWT: Signal irregularity")
    #plot_signal_decomp(data2, 'sym5',
    #                   "DWT: Frequency and phase change - Symmlets5")
    plot_signal_decomp(ecg, 'sym5', "DWT: Ecg sample - Symmlets5")
    
    
    plt.show()

    72
    5

     将数据序列进行小波分解,每一层分解的结果是上次分解得到的低频信号再分解成低频和高频两个部分。如此进过N层分解后源信号X被分解为:X = D1 + D2 + … + DN + AN 其中D1,D2,…,DN分别为第一层、第二层到等N层分解得到的高频信号,AN为第N层分解得到的低频信号。
    ————————————————
    版权声明:本文为CSDN博主「elite666」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
    原文链接:https://blog.csdn.net/elite666/article/details/80687529

  • 相关阅读:
    [liu yanling]常用的测试工具
    [liu yanling]软件测试的过程
    [liu yanling]测试方法
    [Buffalo] 一些SQL函数
    [Stephen]C#中调用C++动态链接库
    [Jacky] 解决Ext.Net GridPanel 选择的行数据刷新后不能获取最新值
    [Tommas] dateadd() 函数用法
    [Tommas] UNION 和 UNION ALL 的区别
    文件I/O编程
    分房问题
  • 原文地址:https://www.cnblogs.com/sggggr/p/12392677.html
Copyright © 2011-2022 走看看