zoukankan      html  css  js  c++  java
  • POJ 2823 Sliding Window 题解

    POJ 2823 Sliding  Window 题解

    Description

    An array of size n ≤ 106 is given to you. There is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves rightwards by one position. Following is an example: 
    The array is [1 3 -1 -3 5 3 6 7], and k is 3.

    Window position

    Minimum value

    Maximum value

    [1  3  -1] -3  5  3  6  7 

    -1

    3

     1 [3  -1  -3] 5  3  6  7 

    -3

    3

     1  3 [-1  -3  5] 3  6  7 

    -3

    5

     1  3  -1 [-3  5  3] 6  7 

    -3

    5

     1  3  -1  -3 [5  3  6] 7 

    3

    6

     1  3  -1  -3  5 [3  6  7]

    3

    7

    Your task is to determine the maximum and minimum values in the sliding window at each position. 

    Input

    The input consists of two lines. The first line contains two integers n and k which are the lengths of the array and the sliding window. There are n integers in the second line. 

    Output

    There are two lines in the output. The first line gives the minimum values in the window at each position, from left to right, respectively. The second line gives the maximum values. 

    Sample Input

    8 3

    1 3 -1 -3 5 3 6 7

    Sample Output

    -1 -3 -3 -3 3 3

    3 3 5 5 6 7

    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    分析:

    这道题让我们每次输出区间内的最大值和最小值,如果每次都扫一遍复杂度较高,本题的数据比较大,这种方法时间上无法承受。本题让我们求区间最大最小值,不难想到用线段树解决这个问题,只需要每次用线段树查询区间的最大最小值即可。

    核心代码如下:

    查询代码:

     1 QAQ Query_Max ( int q , int w , int i )
     2 {
     3     if(q <= tr[i].l && w >= tr[i].r )return tr[i].maxtr ;
     4     else
     5     {
     6         QAQ mid = (tr[i].l + tr[i].r ) >> 1;
     7         if(q > mid)
     8         {
     9             return Query_Max ( q , w , i << 1 | 1);
    10         }
    11         else if(w <= mid)
    12         {
    13             return Query_Max ( q , w , i << 1);
    14         }
    15         else
    16         {
    17             return Max( Query_Max ( q , w , i << 1) , Query_Max ( q , w , i << 1 | 1));
    18         }
    19     }
    20 }
    21 
    22 
    23 QAQ Query_Min ( int q , int w , int i )
    24 {
    25     if(q <= tr[i].l && w >= tr[i].r )return tr[i].mintr ;
    26     else
    27     {
    28         QAQ mid = (tr[i].l + tr[i].r ) >> 1;
    29         if(q > mid)
    30         {
    31             return Query_Min ( q , w , i << 1 | 1);
    32         }
    33         else if(w <= mid)
    34         {
    35             return Query_Min ( q , w , i << 1);
    36         }
    37         else
    38         {
    39             return Min( Query_Min ( q , w , i << 1) , Query_Min ( q , w , i << 1 | 1));
    40         }
    41     }
    42 }

    注:这里QAQ就是long long 用typedef long long QAQ;定义的。

    建树及Push_up操作:

     1 void Push_up (int i)
     2 {
     3     tr[i].maxtr = Max ( tr[i << 1].maxtr , tr[i << 1 | 1].maxtr);
     4     tr[i].mintr = Min ( tr[i << 1].mintr , tr[i << 1 | 1].mintr);
     5 }
     6 
     7 void Build_Tree (int x , int y , int i)
     8 {
     9     tr[i].l = x ;
    10     tr[i].r = y ;
    11     if( x == y )tr[i].maxtr = tr[i].mintr = arr[x] ;
    12     else
    13     {
    14         QAQ mid = (tr[i].l + tr[i].r ) >> 1 ;
    15         Build_Tree ( x , mid , i << 1 );
    16         Build_Tree ( mid + 1 , y , i << 1 | 1);
    17         Push_up ( i );
    18     }
    19 }

    以上就是用线段树解法,是线段树的简单应用,本题还有很多其他写法,比如维护单调队列,比线段树更容易实现代码并且代码量较少,以下是维护单调队列的代码:

     1 #include "stdio.h"
     2 #define maxn (1000100)
     3 int n, K;
     4 int Head, Tail;
     5 int val[maxn];
     6 int numb[maxn];
     7 bool Flag;
     8 inline bool cmp(int a, int b)
     9 {
    10     return Flag ? a < b : a > b;
    11 }
    12 void Push(int idx)
    13 {
    14     while(Head < Tail && cmp(val[idx], val[numb[Tail - 1]])) Tail --;
    15     numb[Tail++] = idx;
    16     while(Head < Tail && idx - numb[Head] + 1 > K) Head ++;
    17 }
    18 int main()
    19 {
    20     scanf("%d %d", &n, &K);
    21     for(int i = 1; i <= n; i++) scanf("%d", &val[i]);
    22     Head = 0 , Tail = 0 , Flag = true;
    23     for(int i = 1; i < K; i++) Push(i);
    24     for(int i = K; i <= n; i++)
    25     {
    26         Push(i);
    27         printf("%d ", val[numb[Head]]);
    28     }
    29     puts("");
    30     Head = 0 , Tail = 0 , Flag = false;
    31     for(int i = 1; i < K; i++) Push(i);
    32     for(int i = K; i <= n; i++)
    33     {
    34         Push(i);
    35         printf("%d ", val[numb[Head]]);
    36     }
    37     puts("");
    38     return 0;
    39 }

    POJ <wbr>2823 <wbr>Sliding_Window题解

    (完)

    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~·~~~~~~~~~~~~~~

  • 相关阅读:
    Python3学习笔记(十七):requests模块
    fiddler(四)、断点(转)
    fiddler(三)、会话框添加显示请求方法栏
    PostgreSQL12同步流复制搭建-同步不生效的问题、主库恢复后,无法与新主库同步问题
    PostgreSQL的count(*) count(1) count(列名)的区别
    CentOS系统日志(转)
    常用PostgreSQL HA(高可用)工具收集
    转-性能优化中CPU、内存、磁盘IO、网络性能的依赖
    PostgreSQL查询数据库中包含某种类型的表有哪些
    PostgreSQL中with和without time zone两者有什么区别
  • 原文地址:https://www.cnblogs.com/shadowland/p/5870389.html
Copyright © 2011-2022 走看看