zoukankan      html  css  js  c++  java
  • noi.ac #38 线段树+时间复杂度分析

    (des)
    存在参数数组 (a)(a) 升序排列

    [a_1 < a_2 < cdots < a_m, m <= 10 ]

    存在长度为 (n) 价值数组 (val)
    存在 (3) 中操作

    1. 使区间 ([l, r]) 内的 (val) 增加 (x)
    2. 单点修改 (x)
    3. 给定区间 ([l, r]) ,定义 (f(x)) 表示最大的 (i) 是的 (a_i <= x)
      (sum_{i = l} ^ {r} f(i))

    (sol)
    如果没有操作2,也就是说元素不会减小,同时 (f(x)) 也不会减小,所有的元素

    (f(x)) 增加一共会有 (O(nm))。这里可以用线段树维护,第 (i) 个点维护的是

    (f(i)) 还需要增加多少才可以增加,单次操作1相当于对区间 ([l, r]) 做减法

    ,显然如果某个时刻存在某个数 (<= 0),这是 (f(x)) 需要增加,改变相关信息

    ,可以线段树维护区间最小值来实现。那么如果存在操作2是一样的,不过可能会

    存在 (f(x)) 的减小的情况,并不会对时间复杂度产生大的影响
    由于一共只会存在 (O((n + q)m)) 次增加,时间复杂度 O((n + 1)mlogn)。

    #include <iostream>
    #include <cstdio>
    #include <algorithm>
    #include <cmath>
    #include <cstring>
    #include <string>
    
    using namespace std;
    const int N = 1e5 + 10;
    
    #define gc getchar()
    #define Rep(i, a, b) for(int i = a; i <= b; i ++)
    #define LL long long
    
    inline int read() {int x = 0; char c = gc; while(c < '0' || c > '9') c = gc;
    while(c >= '0' && c <= '9')	x = x * 10 + c - '0', c = gc; return x;}
    inline LL readLL() {LL x = 0; char c = gc; while(c < '0' || c > '9') c = gc;
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = gc; return x;}
    
    int W[N << 2], F[N << 2], Minn[N << 2];
    int A[15], Val[N];
    int n, m, q;
    
    #define lson jd << 1
    #define rson jd << 1 | 1
    
    void Build_tree(int l, int r, int jd) {
    	if(l == r) {
    		int x = lower_bound(A + 1, A + m + 1, Val[l]) - A;
    		if(A[x] > Val[l]) x --;
    		W[jd] = x;
    		Minn[jd] = A[x + 1] - Val[l];
    		return ;
    	}
    	int mid = (l + r) >> 1;
    	Build_tree(l, mid, lson), Build_tree(mid + 1, r, rson);
    	Minn[jd] = min(Minn[lson], Minn[rson]);
    	W[jd] = W[lson] + W[rson];
    }
    
    void Push_down(int jd) {
    	F[lson] += F[jd], F[rson] += F[jd];
    	Minn[lson] += F[jd], Minn[rson] += F[jd];
    	F[jd] = 0;
    }
    
    void Sec_G(int l, int r, int jd, int x, int y, int num) {
    	if(x <= l && r <= y) {
    		Minn[jd] -= num;
    		F[jd] -= num;
    		return ;
    	}
    	if(F[jd] != 0) Push_down(jd);
    	int mid = (l + r) >> 1;
    	if(x <= mid) Sec_G(l, mid, lson, x, y, num);
    	if(y > mid)  Sec_G(mid + 1, r, rson, x, y, num);
    	Minn[jd] = min(Minn[lson], Minn[rson]);
    }
    
    void Dfs_G(int l, int r, int jd) {
    	if(l == r) {
    		int b = A[W[jd] + 1] - Minn[jd];
    		Val[l] = b;
    		int x = lower_bound(A + 1, A + m + 1, b) - A;
    		if(A[x] > b) x --;
    		W[jd] = x;
    		Minn[jd] = A[x + 1] - b;
    		return ;
    	}
    	if(F[jd]) Push_down(jd);
    	int mid = (l + r) >> 1;
    	if(Minn[lson] <= 0) Dfs_G(l, mid, lson);
    	if(Minn[rson] <= 0) Dfs_G(mid + 1, r, rson);
    	Minn[jd] = min(Minn[lson], Minn[rson]);
    	W[jd] = W[lson] + W[rson];
    }
    
    void Poi_G(int l, int r, int jd, int x, int num) {
    	if(l == r) {
    		Val[l] = num;
    		int x = lower_bound(A + 1, A + m + 1, Val[l]) - A - 1;
    		W[jd] = x;
    		Minn[jd] = A[x + 1] - Val[l];
    		return ;
    	}
    	if(F[jd]) Push_down(jd);
    	int mid = (l + r) >> 1;
    	if(x <= mid) Poi_G(l, mid, lson, x, num);
    	else Poi_G(mid + 1, r, rson, x, num);
    	W[jd] = W[lson] + W[rson];
    	Minn[jd] = min(Minn[lson], Minn[rson]);
    }
    
    int Answer;
    
    void Sec_A(int l, int r, int jd, int x, int y) {
    	if(x <= l && r <= y) {
    		Answer += W[jd];
    		return ;
    	}
    	if(F[jd]) Push_down(jd);
    	int mid = (l + r) >> 1;
    	if(x <= mid) Sec_A(l, mid, lson, x, y);
    	if(y > mid)  Sec_A(mid + 1, r, rson, x, y);
    }
    
    int main() {
    	n = read(), m = read(), q = read();
    	Rep(i, 1, m) A[i] = read();
    	A[m + 1] = (1 << 30);
    	Rep(i, 1, n) Val[i] = read();
    	Build_tree(1, n, 1);
    	Rep(t, 1, q) { 
    		int opt = read();
    		if(opt == 1) {
    			int l = read(), r = read(), x = read();
    			Sec_G(1, n, 1, l, r, x);
    			if(Minn[1] <= 0) Dfs_G(1, n, 1);
    		} else if(opt == 2) {
    			int p = read(), x = read();
    			Poi_G(1, n, 1, p, x);
    		} else {
    			int x = read(), y = read();
    			Answer = 0;
    			Sec_A(1, n, 1, x, y);
    			cout << Answer << "
    ";
    		}
    	}
    	return 0;
    }
    
  • 相关阅读:
    VSCode远程编写Shell并实时调试配置过程
    eclispe 无法启动调试 cannot connect to VM
    工作流之设置表访问权限
    利用工作流返回达到无限次重复办理业务的过程
    eworkflow工作流系统在iis中发布
    ie8用ajax访问不能每次都刷新的问题
    视频演示(动态指定执行人+指定申请人的上级)
    视频演示eworkflow集成定制aspx页面的过程
    利用开发框架中的标签库集成报表工具
    流程设计器之标签工具
  • 原文地址:https://www.cnblogs.com/shandongs1/p/9715092.html
Copyright © 2011-2022 走看看