zoukankan      html  css  js  c++  java
  • CodeForces 166B (凸包)

    求一个多边形是否完全在另一个凸多边形内。

    乍一看,好像要判点在多边形内,但复杂度不允许,仔细一想,可以把两个多边形的点混起来求一个共同的凸包,如果共同的凸包依旧是原来凸包上的点,说明是。

      1 #include <iostream>
      2 #include<cstdio>
      3 #include<cstring>
      4 #include<algorithm>
      5 #include<stdlib.h>
      6 #include<vector>
      7 #include<cmath>
      8 #include<queue>
      9 #include<set>
     10 using namespace std;
     11 #define N 200010
     12 #define LL long long
     13 #define INF 0xfffffff
     14 const double eps = 1e-8;
     15 const double pi = acos(-1.0);
     16 const double inf = ~0u>>2;
     17 struct point
     18 {
     19     double x,y;
     20     int flag;
     21     point(double x=0,double y=0):x(x),y(y){}
     22 }p[N],ch[N],q[N];
     23 typedef point pointt;
     24 point operator -(point a,point b)
     25 {
     26     return point(a.x-b.x,a.y-b.y);
     27 }
     28 int dcmp(double x)
     29 {
     30     if(fabs(x)<eps) return 0;
     31     return x<0?-1:1;
     32 }
     33 double cross(point a,point b)
     34 {
     35     return a.x*b.y-a.y*b.x;
     36 }
     37 double mul(point a,point b,point c)
     38 {
     39     return cross(b-a,c-a);
     40 }
     41 double dis(point a)
     42 {
     43     return sqrt(a.x*a.x+a.y*a.y);
     44 }
     45 bool cmp(point a,point b)
     46 {
     47     if(mul(p[0],a,b)==0)
     48     return dis(p[0]-a)<dis(p[0]-b);
     49     return mul(p[0],a,b)>0;
     50 }
     51 int Graham(int n)
     52 {
     53     int i,k = 0,top;
     54     point tmp;
     55     for(i = 0 ; i < n; i++)
     56     {
     57         if(p[i].y<p[k].y||(p[i].y==p[k].y&&p[i].x<p[k].x))
     58             k = i;
     59     }
     60     if(k!=0)
     61     {
     62         tmp = p[0];
     63         p[0] = p[k];
     64         p[k] = tmp;
     65     }
     66     sort(p+1,p+n,cmp);
     67     ch[0] = p[0];
     68     ch[1] = p[1];
     69     top = 1;
     70     for(i = 2; i < n ; i++)
     71     {
     72         while(top>0&&dcmp(mul(ch[top-1],ch[top],p[i]))<0)
     73             top--;
     74         top++;
     75         ch[top] = p[i];
     76     }
     77     return top;
     78 }
     79 int dot_online_in(point p,point l1,point l2)
     80 {
     81     return !dcmp(mul(p,l1,l2))&&(l1.x-p.x)*(l2.x-p.x)<eps&&(l1.y-p.y)*(l2.y-p.y)<eps;
     82 }
     83 int main()
     84 {
     85     int n,m,i;
     86     cin>>n;
     87     for(i =0 ; i < n; i++)
     88     {
     89         scanf("%lf%lf",&p[i].x,&p[i].y);
     90         p[i].flag = 0;
     91     }
     92     cin>>m;
     93     for(i = n ; i < n+m; i++)
     94     {
     95         scanf("%lf%lf",&p[i].x,&p[i].y);
     96         p[i].flag = 1;
     97         q[i-n] = p[i];
     98     }
     99     int tn = Graham(n+m);
    100     ch[tn+1] = ch[0];
    101     int ff = 1;
    102     for(i = 0 ; i < m ; i++)
    103     {
    104         if(dot_online_in(q[i],ch[tn],ch[tn+1]))
    105         {
    106             ff  = 0;
    107             //cout<<p[i].x<<" "<<p[i].y<<endl;
    108             break;
    109         }
    110     }
    111     if(!ff)
    112     {
    113         puts("NO");
    114         return 0;
    115     }
    116     for(i = 0; i <= tn ; i++)
    117     if(ch[i].flag) {ff = 0;break;}
    118     if(ff) puts("YES");
    119     else puts("NO");
    120     return 0;
    121 }
    View Code
  • 相关阅读:
    机器学习笔记[保持更新]
    习题 7-3 uva211
    习题 7-2 uva225(回溯)
    习题7-1 uva 208(剪枝)
    poj2331 (IDA*)
    poj2449 (第k条最短路)
    POJ 1324(BFS + 状态压缩)
    hdu3567 八数码(搜索)--预处理
    poj 1367 robot(搜索)
    例 7-10 uva12212(迭代加深搜索)
  • 原文地址:https://www.cnblogs.com/shangyu/p/3947723.html
Copyright © 2011-2022 走看看